Log in

Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W.-Germany

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

18O/16O, 34S/32S, and D/H ratios as well as vacuum-fusion H2O+ contents were measured for late Tertiary volcanic basaltic rocks ranging in composition from quartz tholeiites and alkali olivine basalts to melilite-bearing olivine nephelinites and for peridotite xenoliths from the Northern Hessian Depression of W.-Germany. Measured Oisotope ratios in both basalts and peridotites were corrected for variable degree of post-eruption, secondary alteration. The ranges and means of corrected δ 18O values (‰ SMOW) for the North Hessian lavas and peridotites are: (i) 8 tholeiites: ca. +6.1 to +7.3 (¯x=+6.6), (ii) 21 alkali olivine basalts: ca. +5.4 to +7.6 (¯x=+6.5), (iii) 19 nepheline basanites, limburgites, and olivine nephelinites: ca. +5.3 to +8.0 (¯x=+6.6), and (iv) 23 peridotites: +5.1 to 7.0 (¯x+6.0). The δ 34S values (‰ CDT) for the tholeiites range from −0.6 to +1.4 (¯x=−0.03) and for the alkali basalts range from +0.9 to +8.6 (¯x=+2.5). The approximate δD value (‰ SMOW) of the pristine basalts and peridotites is estimated to have been ca. −90‰

The quartz tholeiites appear to have had a different genetic history than the alkali basalts. Supported by chemical evidence, the 18O and 87Sr enrichment observed in the tholeiites suggests low crustal contamination of parental olivine tholeiite melts, derived from a depleted mantle source. The contamination by crustal partial melts may have occurred in granulitic lower crust during differentiation. By contrast the high δ 18O and δ 34S values observed for the alkali basalts and peridotites are best explained in terms of metasomatic alteration of the mantle source region by fluids enriched in 18O, K, and incompatible trace elements prior to partial melting. The δ 18O-K relationships for the peridotites indicate that the mantle beneath the Northern Hessian Depression has had a complex stable isotope history involving at least two distinct metasomatic events. The earlier event involved a CO2-rich fluid which modified 18O/16O ratios without altering the mineralogical character of the mantle peridotite. The second event involved an aqueous fluid, which mainly altered the clinopyroxene and introduced phlogopite (plus possibly apatite, carbonate, and amphibole). It superimposed an 18O and K enrichment upon a previously altered mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre CJ, Javoy M (1969) Coupled 18O/16O and 87Sr/86Sr determinations in volcanic rocks and magmatologic implications. EOS 50:356

    Google Scholar 

  • Bigeleisen J, Perlman ML, Prosser HC (1952) Conversion of hydrogenic materials to hydrogen for isotopic analysis. Anal Chem 24:1356–1357

    Google Scholar 

  • Boettcher AL, O'Neil JR (1980) Stable isotope, chemical and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am J Sci 280A:594–621

    Google Scholar 

  • Byers CD, Christie DM, Muenow DW, Sinton JM (1984) Volatile contents and ferric-ferrous ratios of basalt, ferrobasalt, andesite and rhyodacite glasses from the Galapagos 95.5° W propagating rift. Geochim Cosmochim Acta 48:2239–2245

    Google Scholar 

  • Byers CD, Garcia MO, Muenow DW (1985) Volatiles in pillow rim glasses from Loihi and Kilauea volcanoes, Hawaii. Geochim Cosmochim Acta 49:1887–1896

    Google Scholar 

  • Carmichael ISE, Nicholls J, Spera FJ, Wood BJ, Nelson SA (1977) High-temperature properties of silicate liquids: applications to the equilibration and ascent of basic magma. Philos Trans R Soc London A 286:373–431

    Google Scholar 

  • Cerling TE, Brown FH, Bowman JR (1985) Low-temperature alteration of volcanic glass: hydration, Na, K, 18O, and Ar mobility. Chem Geol (Isotope Geosci) 52:281–293

    Google Scholar 

  • Clayton RN, Mayeda TK (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analyses. Geochim Cosmochim Acta 27:43–53

    Google Scholar 

  • Craig H, Lupton JE (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385

    Google Scholar 

  • Faure G, Bowman JR, Elliot DH, Jones LN (1974) Strontium isotopic composition and petrogenesis of the Kirkpatrick basalt, Queen Alexandra Range, Antarctica. Contrib Mineral Petrol 48:155–169

    Google Scholar 

  • Ferrara G, Laurenzi MA, Taylor HP, Tonarini S, Turi B (1984) Oxygen and strontium isotope studies of K-rich volcanic rocks from the Alban Hills, Italy. Earth Planet Sci Lett 75:13–28

    Google Scholar 

  • Ferrara G, Preite-Martinez M, Taylor HP, Tonarini S, Turi B (1986) Evidence for crustal assimilation, mixing of magmas, and a 87Sr-rich upper mantle: an oxygen and strontium isotope study of the M. Vulsini volcanic area, Central Italy. Contrib Mineral Petrol 92:269–280

    Google Scholar 

  • Freer R (1981) Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contrib Mineral Petrol 76:440–454

    Google Scholar 

  • Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from southeastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513

    Google Scholar 

  • Greenland LP, Rose WI, Stokes JB (1985) An estimate of gas emissions and magmatic gas content from Kilauea volcano. Geochim Cosmochim Acta 49:125–129

    Google Scholar 

  • Gregory RT, Taylor HP Jr (1986a) Possible non-equilibrium oxygen isotope effects in mantle nodules, an alternative to the Kyser-O'Neil-Carmichael 18O/16O geothermometer. Contrib Mineral Petrol 93:114–119

    Google Scholar 

  • Gregory RT, Taylor HP Jr (1986b) Non-equilibrium, metasomatic 18O/16O effects in upper mantle mineral assemblages. Contrib Mineral Petrol 93:124–135

    Google Scholar 

  • Grinenko LN, Ukhanov AV (1977) Sulfur levels and isotopic compositions in upper-mantle xenoliths from the Obnazhennaya kimberlite pipe. Geochem Int 14:169–171

    Google Scholar 

  • Harmon RS, Hoefs J (1984) O-isotope relationships in Cenozoic volcanic rocks: evidence for a heterogeneous mantle source and open-system magma genesis. In: Dungan MA, Grove TL, Hildreth W (eds) Proc ISEM Field Conf Open Magmatic Systems, pp 66–68

  • Hart SR, Davis KE (1978) Nickel partitioning between olivine and silicate melt. Earth Planet Sci Lett 40:203–219

    Google Scholar 

  • Hartmann G (1986) Chemische Zusammensetzung und Mineralbestand von Peridotit-Xenolithen mit unterschiedlicher metasomatischer Überprägung aus Basalten der Hessischen Senke. Dr. rer. nat. Thesis University of Göttingen

  • Hess HH, Poldervaart A (1967) Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition, Vol 1. John Wiley and Sons, Chichester

    Google Scholar 

  • Hess HH, Poldervaart A (1968) Basalts: The Poldervaart Treatise on Rocks of Basaltic Composition, Vol 2. John Wiley and Sons, Chichester

    Google Scholar 

  • Hoefs J, Faure G, Elliot DH (1980) Correlation of δ18O and initial 87Sr/86Sr ratios in Kirkpatrick basalt on Mt Falla, Transantarctic Mountains. Contrib Mineral Petrol 75:199–203

    Google Scholar 

  • Holdaway MJ, Dutrow BL, Borthwick J, Shore P, Harmon RS, Hinton RW (1986) Staurolite water content as determined by H vacuum extraction line and ion microprobe techniques. Am Mineral 71:1135–1141

    Google Scholar 

  • Hutchison R, Chambers AL, Paul DK, Harris PG (1975) Chemical variation among French ultramafic xenoliths — evidence for a heterogeneous upper mantle. Mineral Mag 40:153–170

    Google Scholar 

  • Ito E, Göpel C, White WU, Jochum KP, Seufert HW, Voshage H, Hofmann AW (1982) Inferences on the composition and evolution of the source of MORB. Proc 5th Int Conf Geochronology, Cosmochronology, Isotope Geology (Nikko, Japan), pp 166–167

  • Kanehira K, Yui S, Sakai H, Sasaki A (1973) Sulphide globules and sulphur isotope ratios in the abyssal tholeiite from the Mid-Atlantic Ridge near 30° N latitude. Geochem J 7:89–96

    Google Scholar 

  • Kreuzer H, Besang C, Harre W, Müller P, Ulrich HJ, Vinken R (1973) K/Ar-Datierungen an jungtertiären Basalten aus dem Vogelsberg und aus dem Raum zwischen Kassel und Göttingen. Fortschr Mineral 50:Beih 3, 10–11

    Google Scholar 

  • Kurat G, Niedermayr G, Prinz M (1982) Peridot von Zabargad, Rotes Meer. Aufschluß 33:169–182

    Google Scholar 

  • Kyser TK, O'Neil JR (1984) Hydrogen isotope systematics of submarine basalts. Geochim Cosmochim Acta 48:2123–2133

    Google Scholar 

  • Kyser TK, O'Neil JR, Carmichael ISE (1981) Oxygen isotope thermometry of basic lavas and mantle nodules. Contrib Mineral Petrol 77:11–23

    Google Scholar 

  • Kyser TK, O'Neil JR, Carmichael SE (1982) Genetic relations among basic lavas and ultramafic nodules: evidence from oxygen isotope compositions. Contrib Mineral Petrol 81:88–102

    Google Scholar 

  • Lange J, Brumsack HJ (1977) Total sulphur analysis in geological and biological materials by coulometric titration following combustion. Z Anal Chem 286:361–366

    Google Scholar 

  • Lippolt HJ (1983) Distribution of volcanic activity in space and time. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds) Plateau Uplift 112–120. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Maalöe S, Aoki K (1977) The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib Mineral Petrol 63:161–173

    Google Scholar 

  • Matsuhisa Y, Kurasawa H (1983) Oxygen and strontium isotopic characteristics of calc-alkalic volcanic rocks from the central and western Japan Arcs: evaluation of contribution of crustal components to the magmas. J Volcan Geotherm Res 18:483–510

    Google Scholar 

  • Mengel K, Kramm U, Wedepohl KH, Gohn E (1984) Sr isotopes in peridotite xenoliths and their basaltic host rocks from the northern Hessian Depression (NW Germany). Contrib Mineral Petrol 87:369–375

    Google Scholar 

  • Mensing TM, Faure M, Jones LM, Bowman JR, Hoefs J (1984) Petrogenesis of the Kirkpatrick basalt, Solo Nunatak, Northern Victoria Land, Antarctica, based on isotopic compositions of strontium, oxygen and sulfur. Contrib Mineral Petrol 87:101–108

    Google Scholar 

  • Moore JG (1970) Water content of basalt erupted on the ocean floor. Contrib Mineral Petrol 28:272–279

    Google Scholar 

  • Muehlenbachs K, Clayton RN (1972) Oxygen isotope studies of fresh and weathered submarine basalts. Can J Earth Sci 9:172–184

    Google Scholar 

  • Muehlenbachs K, Kushiro I (1974) Oxygen isotope exchange and equilibrium of silicates with CO2 or O2. Carnegie Inst Washington Yearb 73:232–236

    Google Scholar 

  • Muenow DW, Graham DG, Liu NWK, Delaney JR (1979) The abundance of volatiles in Hawaiian tholeiitic submarine basalts. Earth Planet Sci Lett 42:71–76

    Google Scholar 

  • Muenow DW, Liu NWK, Garcia MO, Saunders AD (1980) Volatiles in submarine volcanic rocks from the spreading axis of the East Scotia Sea back-arc basin. Earth Planet Sci Lett 47:272–278

    Google Scholar 

  • Muramatsu Y, Wedepohl KH (1979) Chlorine in Tertiary basalts from the Hessian Depression in NW Germany. Contrib Mineral Petrol 70:357–366

    Google Scholar 

  • Mysen BO (1983) Rare earth element partitioning between (H2O+CO2) vapor and upper mantle minerals: Experimental data bearing on the conditions of formation of alkali basalt and kimberlite. Neues Jahrbuch Mineral Abh 146:41–65

    Google Scholar 

  • Newman S, Stolper E, Epstein S (1984) Hydrogen, isotopic-IR spectroscopic studies of dissolved water in silicate glasses. EOS (Abstr) 65:287

    Google Scholar 

  • Oehm J, Schneider A, Wedepohl KH (1983) Upper mantle rocks from basalts of the northern Hessian depression (NW Germany). TMPM Tschermaks Mineral Petrol Mitt 32:25–48

    Google Scholar 

  • Pineau F, Javoy M, Hawkins JW, Craig H (1976) Oxygen isotope variations in marginal basin and ocean-ridge basalts. Earth Planet Sci Lett 28:299–307

    Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296

    Google Scholar 

  • Poreda R (1985) Helium-3 and deutrium in back-arc basalts: Lau Basin and the Mariana Trough. Earth Planet Sci Lett 73:244–254

    Google Scholar 

  • Puchelt H, Hubberten HW (1979) Preliminary results of sulfur isotope investigations on deep sea drilling project cores from Legs 52 and 53. Initial Reports DSDP 51, 52, 53:1145–1148

    Google Scholar 

  • Ringwood T (1986) Dynamics of subducted lithosphere and implications for basalt petrogenesis. Terra Cognita 6:67–77

    Google Scholar 

  • Sachtleben T (1980) Petrologie ultrabasischer Auswürflinge aus der Westeifel. Dissertation, Köln

  • Sakai H, Casadevall TJ, Moore JG (1982) Chemistry and isotope ratios of sulfur in basalts and volcanic gases at Kilauea Volcano, Hawaii. Geochim Cosmochim Acta 46:729–738

    Google Scholar 

  • Sakai H, Des Marais DJ, Ueda A, Moore JG (1984) Concentration and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441

    Google Scholar 

  • Sasaki A, Arikawa Y, Folinsbee RE (1979) Kiba reagent method of sulfur extraction applied to isotopic work. Bull Geol Surv Jpn 30:241–245

    Google Scholar 

  • Scarfe CM (1973) Water solubility in basic and ultrabasic magmas. Nature 246:9–10

    Google Scholar 

  • Scarfe CM, Takahashi E, Yoder HS Jr (1980) Rates of dissolution of upper mantle minerals in an alkali-olivine basalt melt at high pressures. Carnegie Inst Washington Yearb 79:290–296

    Google Scholar 

  • Schneider A (1970) The sulfur isotope composition of basaltic rocks. Contrib Mineral Petrol 25:95–124

    Google Scholar 

  • Schneider ME, Eggler DH (1986) Fluids in equilibrium with peridotite minerals: implications for mantle metasomatism. Geochim Cosmochim Acta 50:711–724

    Google Scholar 

  • Schneider A, Wedepohl KH, Mengel K (1984) Incipient melting of upper mantle rocks. 27. Intern Geol Congr Moscow Sect 511.2.1 (Abstract)

  • Smitheringale WG, Jensen ML (1963) Sulfur isotopic composition of the Triassic igneous rocks of eastern United States. Geochim Cosmochim Acta 27:1183–1207

    Google Scholar 

  • Spera FJ (1980) Aspects of magma transport. In: Hargraves RB (ed) Physics of magmatic processes, Chapt 7. Princeton University Press

  • Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879

    Google Scholar 

  • Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen istopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature (London) 306:541–545

    Google Scholar 

  • Taylor HP (1968) The oxygen isotope geochemistry of igneous rocks. Contrib Mineral Petrol 19:1–71

    Google Scholar 

  • Taylor HP (1978) Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth Planet Sci Lett 38:177–210

    Google Scholar 

  • Taylor HP (1980) The effects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth Planet Sci Lett 47:243–254

    Google Scholar 

  • Taylor HP, Giannetti B, Turi B (1979) Oxygen isotope geochemistry of the potassic igneous rocks from Roccamonfina volcano, Roman comagmatic region. Earth Planet Sci Lett 46:81–106

    Google Scholar 

  • Taylor HP, Turi B, Cundari A (1984) 18O/16O and chemical relationships in K-rich volcanic rocks from Australia, East Africa, Antarctica and San Venanzo-Cupaello, Italy. Earth Planet Sci Lett 69:263–276

    Google Scholar 

  • Torssander P (1981) An estimate of the sulfur isotope composition in Icelandic rocks: a preliminary note. In: Rickard D (ed) Annual Report of the Ore Research Group, Stockholm University

  • Tsai H, Shieh Y, Meyer HOA (1979) Mineralogy and S34/S32 ratios of sulfides associated with kimberlite, xenoliths and diamonds. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanics. Proc 2nd Int Kimberlite Conf 2:87–103

  • Turi B, Taylor HP (1976) Oxygen isotopic studies of potassic volcanic rocks of the Roman Province, Central Italy. Contrib Mineral Petrol 55:1–31

    Google Scholar 

  • Wedepohl KH (1982) K-Ar-Altersbestimmungen an basaltischen Vulkaniten der nördlichen Hessischen Senke und ihr Beitrag zur Diskussion der Magmengenese. Neues Jahrb Mineral Abh 144:172–196

    Google Scholar 

  • Wedepohl KH (1983) Die chemische Zusammensetzung der basaltischen Gesteine der nördlichen Hessischen Senke und ihrer Umgebung. Geol Jahrb Hessen 111:261–302

    Google Scholar 

  • Wedepohl KH (1985) Origin of the Tertiary basaltic volcanism in the northern Hessian Depression. Contrib Mineral Petrol 89:122–143

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmon, R.S., Hoefs, J. & Wedepohl, K.H. Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W.-Germany. Contr. Mineral. and Petrol. 95, 350–369 (1987). https://doi.org/10.1007/BF00371849

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371849

Keywords

Navigation