Log in

Oxygen mass transfer at liquid-metal-vapour interfaces under a low total pressure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The problem of oxygen exchange at the interface between a gas and a liquid metal is treated for systems under a “vacuum” (Knudsen regime, pressures lower than 1 Pa), where, due to the large mean free path of gas molecules in a vacuum, transport processes in the gas phase have no influence on the total interphase mass exchange, which is controlled by interface phenomena and by oxygen partition equilibrium inside the liquid. Owing to the double contribution of molecular O2 and volatile oxides to the oxygen flux from the surface, non-equilibrium steady-state conditions can be established, in which no variations in the composition of the two phases occur with time, as the result of opposite oxygen exchanges. The total oxygen and metal evaporation rates are evaluated as a function of the overall thermodynamic driving forces, and an account of the transport kinetics is given by using appropriate coefficients. A steady-state saturation degree s r, is defined which relates the oxygen activity in the liquid metal to the O2 pressure imposed and to the vapour pressures of volatile oxides. When metals able to form volatile oxides are considered, pressures of molecular O2 higher than those defined under equilibrium conditions have to be imposed in the experimental set-up in order to obtain a certain saturation degree, as a consequence of the condensation of the oxide vapours on the reactor walls. Effective oxidation parameters are determined, which define the conditions leading the liquid to a definite steady-state composition under a “vacuum” when it is out of equilibrium. The effective value of the oxygen pressure which corresponds to the complete oxygen saturation of the metal, \(P_{O_{2,} s}^E \), is evaluated at different temperatures for the systems Si-O and Al-O. The results are represented as curves of \(P_{O_{2,} s}^E \) against T, which separate different oxidation regimes; these results agree well with the experimental data found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a η :

activity of the component η in the liquid phase

k η :

partial-transport coefficients for the mass transfer of the component η (mol s g−1 cm−1)

K η :

global-transport coefficients for the mass transfer of the component η (mol s g−1 cm−1)

M η :

molecular weight of the species η (g mol−1)

N totM :

global metal flux between the gas and the condensed phase (mol cm−2 s−1)

\(N_{O_2 }^{tot} \) :

global oxygen flux between the gas and the condensed phase (mol cm−2 s−1)

P j :

partial pressure of the j th oxide (Pa)

P M :

vapour pressure of the pure metal (Pa)

\(P_{O_2 } \) :

partial pressure of molecular O2 (Pa)

P tot :

total pressure (Pa)

P EM :

effective metal-vapour pressure (Pa)

\(P_{O_2 }^E \) :

effective oxidation pressure (Pa)

R E :

effective evaporation ratio

s :

actual value of the bulk-saturation degree

s r :

value of the bulk-saturation degree in steady-state (regime) conditions

T :

temperature in the system, far from the container wall (K)

T w :

temperature of the container wall (K)

x η :

molar fraction of the component η in the liquid phase

α η :

condensation coefficient of the species η (cm−3/2)

l:

a quantity evaluated for a liquid below the saturation point

liq:

quantity in the bulk liquid

s:

a quantity evaluated in conditions where the liquid metal is saturated with oxygen

I:

a quantity in the interfacial liquid layer

References

  1. C. H. P. Lupis “Chemical Thermodynamics of Materials” (Elsevier Publishers, Amsterdam, Holland, 1983).

    Google Scholar 

  2. J. F. Padday In “Surface & Colloid Science” Ed. E. Matijevic (Wiley Intersc., New York, 1969).

    Google Scholar 

  3. Ju. V. Naidich, in “Progress in Surface and Membrane Science” Vol. 14, Eds. D. A. Cadenhead and J. F. Danielli (Academic Press, New York, 1981).

    Google Scholar 

  4. E. Ricci and A. Passerone, Mater. Sci. Eng. A161 (1993), 31.

    Article  CAS  Google Scholar 

  5. E. Ricci, A. Passerone, P. Castello and P. Costa, J. Mater. Sci. 29 (1994) 1833.

    Article  CAS  Google Scholar 

  6. H. H. Kellogg, Trans. Met. Soc. AIME, 263 (1966), 602.

    Google Scholar 

  7. D. Beruto, L. Barco and G. Belleri, Ceramurgia International 1 (1975), 87.

    Article  CAS  Google Scholar 

  8. C. Wagner, J. Appl. Phys. 29 (1958), 1295.

    Article  CAS  Google Scholar 

  9. E. A. Gulbransen, K. F. Andrew and F. A. Brassart, J. Electrochem. Soc. 113 (1966), 834.

    Article  CAS  Google Scholar 

  10. L. Brewer and G. M. Rosemblatt, Trans. Met. Soc. AIME 224 (1962), 1268.

    CAS  Google Scholar 

  11. O. Winkler and R. Bakish, “Vacuum Metallurgy” (Elsevier Publishers, Amsterdam, 1971).

    Google Scholar 

  12. R. Ohno in “Liquid Metals-Chemistry and Physics”, Chap. 2, Ed. S. Z. Beer (Marcel Dekker Inc., New York, 1972).

    Google Scholar 

  13. S. Otsuka and Z. Kozuka, Trans. Jpn. Inst. Met. 22 (1981), 558.

    Article  CAS  Google Scholar 

  14. R. H. Lamoreaux, D. L. Hildebrand and L. Brewer, High Temp. Sci. 20 (1985), 37.

    CAS  Google Scholar 

  15. R. J. Ackermann and R. J. Thorn, in “Progress in Ceramic Science”, Vol. 1, Chap. 2, Ed. J. E. Burke (Pergamon Press, New York, 1961).

    Google Scholar 

  16. E. Ricci, A. Passerone and J. C. Joud, Surface Sci. 206 (1988), 533.

    Article  CAS  Google Scholar 

  17. J. J. Brennan and J. A. Pask, J. Am. Cer. Soc. 51 (1968), 569.

    Article  CAS  Google Scholar 

  18. L. Coudurier, J. Adorian, D. Pique and N. Eustathopoulos, Rev. Int. Hautes Temp. Refract. 21 (1984), 81.

    CAS  Google Scholar 

  19. V. Laurent, D. Chatain, C. Chatillon and N. Eusthopoulos, Acta Met 36 (1988), 1797.

    Article  CAS  Google Scholar 

  20. O. Knacke, O. Kubaschewski and K. Hesselmann, “Thermo-chemical Properties of Inorganic Substances” Second Edition (Springer Verlag, Verlag Stahleisen m. b. H Dusseldorf, 1991).

    Google Scholar 

  21. C. Gelain, A. Cassuto and P. Le Goff, Oxidation of Metals 3 (1971), 139.

    Article  CAS  Google Scholar 

  22. L. Goumiri and J. C. Joud, Acta Met. 30 (1982), 1397.

    Article  CAS  Google Scholar 

  23. Y. Austin Chang and Ker-Chang Hsieh “ Phase Diagrams of Ternary Copper-Oxygen-Metal Systems” (ASM International, Metals Park, Ohio, 1989).

    Google Scholar 

  24. R. Colin, J. Drowart and G. Verhagen, Trans. Faraday Soc. 61, n. 511 Part 7 (1965), 1364.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castello, P., Ricci, E., Passerone, A. et al. Oxygen mass transfer at liquid-metal-vapour interfaces under a low total pressure. JOURNAL OF MATERIALS SCIENCE 29, 6104–6114 (1994). https://doi.org/10.1007/BF00354549

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00354549

Keywords

Navigation