Log in

Quantitative competition of calcium with sodium or magnesium for sorption sites on plasma membrane vesicles of melon (Cucumis melo L.) root cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The presence of Ca2+ ions in solution is vital for root growth. The plasma membrane is one of the first sites where competition between Ca2+ and other ions occurs. We studied the competition between Ca2+ and Na+ or Mg2+ for sorption sites on the plasma membrane of melon root cells.

Sorption of 45Ca2+ to right-side-out PM vesicles of melon (Cucumis melo L.) roots (prepared by aqueous two-phase partitioning) was studied at various Ca2+ concentrations, in the presence of increasing concentrations of Na+ or Mg2+ chlorides. Experimentally determined amounts of Ca2+ sorbed to the plasma membrane vesicles agreed fairly well with those calculated from a competitive sorption model. The best fit of the model to the experimental data was obtained for an average surface area of 370 Å2 per charge, and binding coefficients for Na+, Mg2+ and Ca2+ of 0.8, 9 and 50 m -1, respectively.

Our results suggest that nonphospholipid components in the plasma membrane contribute significantly to Ca2+ binding. The high affinity of Ca2+ binding to the plasma membrane found in this study might explain the specific role of Ca2+ in relieving salt stress in plant roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barber, J. 1982. Influence of surface charges on thylakoid structure and function. Annu. Rev, Plant Physiol. 33:261–295

    Google Scholar 

  • Baruch, E., Lichtenberg, D., Barak, P., Nir, S. 1991. Calcium binding to bile salts. Chem. Phys. Lip. 57:17–21

    Google Scholar 

  • Ben Hayyim, G., Kafkafi, U., Ganmore-Newman, R. 1987. The role of internal potassium in maintaining growth of cultured citrus cells on increasing NaCl and CaCl2 concentration. Plant Physiol. 85:434–439

    Google Scholar 

  • Ben Hayyim, G., Ran, U. 1990. Salt-induced cooperativity in ATPase activity of plasma membrane-enriched fraction from cultured citrus cells: kinetic evidence. Physiologia Plantarum 80:210–216

    Google Scholar 

  • Bentz, J., Alford, D., Cohen, J., Duzgunes, N. 1988. La3+-induced fusion of phosphatidylserine liposomes: close approach, intermembrane intermediates, and the electrostatic surface potential. Biophys. J. 53:593–607

    Google Scholar 

  • Borochov-Neori, H., Borochov, A. 1991. Response of melon plant to salt: 1. Growth, morphology and root membrane properties. J. Plant Physiol. 139:100–105

    Google Scholar 

  • Bradford, M.M. 1979. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254

    Google Scholar 

  • Chow, W.S., Barber, J. 1980. Salt-dependent changes of 9-aminoacridine fluorescence as a measure of charge densities of membrane surfaces. J. Biochem. Biophys. Methods 3:173–185

    Google Scholar 

  • Clarkson, D.T., Hanson, J.B. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31:239–298

    Google Scholar 

  • Cohen, J.A., Cohen, M. 1981. Adsorption of monovalent and divalent cations by phospholipid membranes: the monomer-dimer problem. Biophys. J. 36:623–651

    Google Scholar 

  • Cramer, G.R., Lauchli, A., Polito, V.S. 1985. Displacement of Ca2+ by Na from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol. 79:207–211

    Google Scholar 

  • Dluhy, R.A., Cameron, D.G., Manisch, H.H., Mendelsohn, R. 1983. Fourier transform infrared studies of the effect of calcium ions on phosphatidylserine. Biochemistry 22:6318–6325

    Google Scholar 

  • Duzgunes, N., Nir, S., Wilschut, J., Bentz, J., Newton, C., Portis, A., Papahadjopoulos, D. 1981. Calcium and magnesium induced fusion of mixed phosphatidylserine/phosphatidylcholine vesicles: Effect of ion binding. J. Membrane Biol. 59:115–125

    Google Scholar 

  • Eisenberg, M., Gresalfi, T., Riccio, T., McLaughlin, S. 1979. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. Biochemistry 18:5213–5223

    Google Scholar 

  • Gennis, R.B. 1989. Biomembranes Molecular Structure and Function. Springer-Verlag, New York

    Google Scholar 

  • Giannini, J.L., Ruiz-Cristin, J., Briskin, D.P. 1987. Calcium transport in sealed vesicles from red beet (Beta vulgaris L.) storage tissue. Plant Physiol. 85:1137–1142

    Google Scholar 

  • Hirsch, D., Nir, S., Banin, A. 1989. Prediction of cadmium complexation in solution and adsorption to montmorillonite. Soil Sci. Soc. Amer. J. 53:716–721

    Google Scholar 

  • Kinraide, T.B., Ryan, P.R., Kochian, L.V. 1992. Interactive effects of Al3+, H+ and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol. 99:1461–1468

    Google Scholar 

  • Korner, L.E., Kjellbom, P., Larsson, C., Moller, I.M. 1985. Surface properties of right-side-out plasma membrane vesicles isolated from barley root and leaves. Plant Physiol. 79:72–79

    Google Scholar 

  • Kurland, R., Newton, C., Nir, S., Papahadjopoulos, D. 1979. Specificity of Na+ binding to phosphatidylserine vesicles from a 23Na NMR relaxation rate study. Biochim. Biophys. Acta 551:137–147

    Google Scholar 

  • LaHaye, P.A., Epstein, E. 1969. Salt toleration by plants: enhancement with calcium. Science 166:395–396

    Google Scholar 

  • Larsson, C., Widell, S., Sommarin, M. 1988. Inside-out plant plasma membrane vesicles of high purity obtained by aqueous two-phase partitioning. Fed. Eur. Bio. Soc. 2:289–292

    Google Scholar 

  • Lynch, J., Lauchli, A. 1987. Salinity reduces membrane associated calcium in corn root protoplasts. Plant Physiol. 83:390–394

    Google Scholar 

  • Lynch, J., Lauchli, A. 1988. Salinity affects intracellular calcium in corn root protoplasts. Plant Physiol. 87:351–356

    Google Scholar 

  • McLaughlin, A.C. 1982. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of divalent cation binding to phosphatidylserine membrane: use of cobalt as a paramagnetic probe. Biochemistry 21:4879–4885

    Google Scholar 

  • McLaughlin, S.G.A. 1977. Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  • McLaughlin S., Mulrine, N., Gresalfi, T., Vaio, G., McLaughlin, A. 1981. The adsorption of divalent cations to bilayer membranes containing phosphatidylserine. J. Gen. Physiol. 77:445–473

    Google Scholar 

  • Moller, I.M., Lundborg, T., Berczi, A. 1984. The negative surface charge density of plasmalemma vesicles from wheat and oat roots. Fed. Eur. Bio. Soc. 167:181–185

    Google Scholar 

  • Newton, C., Pangborn, W., Nir, S., Papahadjopoulos, D. 1978. Specificity of Ca2+ and Mg2+ binding to phosphatidylserine vesicles and resultant phase changes of bilayer structure. Biochim. Biophys. Acta 506:281–287

    Google Scholar 

  • Nir, S. 1984. A model for cation sorption in closed systems: application to calcium binding to phospholipid vesicles. J. Coll. Interf. Sci. 102:313–321

    Google Scholar 

  • Nir, S., Hirsch, D., Navrot, J., Banin, A. 1986. Specific adsorption of lithium, sodium, potassium, and strontium to montmorillonite: observations and predictions. Soil Sci. Soc. Am. J. 50:40–45

    Google Scholar 

  • Nir, S., Newton, C., Papahadjopoulos, D. 1978. Binding of cations to phosphatidylserine vesicles. Bioelectrochem. Bioenerg. 5:116–133

    Google Scholar 

  • Obi, I., Ichikawa, Y., Kakutani, T., Senda, M. 1989. Electrophoresis, zeta potential and surface charges of barley mesophyll protoplasts. Plant Cell Physiol. 30:129–135

    Google Scholar 

  • Ohki, S., Kurland, R. 1981. Surface potential of phosphatidylserine monolayers: II. Divalent and monovalent ion binding. Biochim. Biophys. Acta 645:170–176

    Google Scholar 

  • Oka, K., Ikeshima, H., Ishikawa, H., Ohta, E., Sakata, M. 1988. Surface charge density estimation of Vigna mungo protoplasts using a fluorescent dye, 9-aminoacridine. Plant Cell Physiol. 29(5):771–775

    Google Scholar 

  • Palmgren, G.M., Askerlund, P., Fredrikson, K., Widell, S., Sommarin, M., Larsson, C. 1990. Sealed inside-out and right-side-out plasma membrane vesicles. Plant Physiol. 92:871–880

    Google Scholar 

  • Reuter, H. 1983. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301:569–574

    Google Scholar 

  • Roux, M., Bloom, M. 1990. Ca2+, Mg2+, Li+ Na+ and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR. Biochemistry 29:7077–7089

    Google Scholar 

  • Sack, F.D., Priestley, D.A., Leopold, A.C. 1983. Surface charge on isolated maize-coleoptile amyloplasts. Planta 157:511–517

    Google Scholar 

  • Seelig, J., MacDonald, P.M., Scherer, P.G. 1987. Phospholipid headgroups as sensors of electric charge in membranes. Biochemistry 26:7535–7541

    Google Scholar 

  • Vom Dorp, B., Volkmann, D., Scherer, G.F.E. 1986. Identification of tonoplast and plasma membrane in membrane fractions from garden cress (Lepidium sativum L) with and without filipin treatment. Planta 168:151–160

    Google Scholar 

  • Winiski, A.P., McLaughlin, A.C., McDaniel, R.V., Eisenberg, M., McLaughlin, S. 1986. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers. Biochemistry 25:8206–8214

    Google Scholar 

  • Young, D.H., Kauss, H. 1983. Release of calcium suspension-cultured Glycine max cells by chitosan, other polycations, and polyamines in relation to effects on membrane permeability. Plant Physiol. 73:698–702

    Google Scholar 

  • Zidan, I., Jacoby, B., Ravina, I., Neumann, P.M. 1991. Sodium does not compete with calcium in saturating plasma membrane sites regulating 22Na influx in salinized maize roots. Plant Physiol. 96:331–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by the GIFRID German-Israel fund for research and international development.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yermiyahu, U., Nir, S., Ben-Hayyim, G. et al. Quantitative competition of calcium with sodium or magnesium for sorption sites on plasma membrane vesicles of melon (Cucumis melo L.) root cells. J. Membarin Biol. 138, 55–63 (1994). https://doi.org/10.1007/BF00211069

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00211069

Key words

Navigation