Log in

The vertebrate pineal hormone melatonin is produced by the brown alga Pterygophora californica and mimics dark effects on growth rate in the light

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Melatonin, a methoxylated indoleamine, plays a role as a mediator of darkness in animals as well as in the unicellular alga Gonyaulax polyedra Stein and was recently detected in higher plants. We report on the first finding of melatonin in a multicellular alga, the brown alga Pterygophora californica Rupr. Melatonin was identified in juvenile sporophytes of P. californica by two independent methods, reverse-phase high-performance liquid chromatography (HPLC) with electrochemical detection, and radioimmunoassay. Another indolic metabolite, 5-methoxytryptophol, was also indentified by HPLC. The rapid decline of growth rate upon the onset of darkness in P. californica is mimicked by melatonin in the light, with increasing efficiency from 5 × 10−5M to 5 × 10−4M, while no effect was obtained at 10−5M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

analysis of variance

DMSO:

dimethyl sulfoxide

LD:

light-dark cycle

References

  • Arendt J (1986) Role of the pineal gland and melatonin in seasonal functions in mammals. In: Clarke JR (ed) Oxford reviews of reproductive biology, vol 8. Oxford University Press, Oxford, pp 266–320

    Google Scholar 

  • Balzer I, Hardeland R (1991) Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax poyedra. Science 253: 795–7

    Google Scholar 

  • Balzer I, Hardeland R (1996) Melatonin in algae and higher plants — Possible new role as a phytohormone and antioxidant. Bot Acta, in press

  • Balzer IR, Poeggeler R, Hardeland R (1993) Circadian rhythms of indoleamines in a dinoflagellate, Gonyaulax polyedra. Persistence of melatonin rhythm in constant darkness and relationship to 5-methoxytryptamine. In: Touitou Y, Arendt J, Pévet P (eds) Melatonin and the pinal gland —From basic science to clinical application. Excerpta Medica, Amsterdam, pp 183–186

    Google Scholar 

  • Binkley S (1993) Structures and molecules involved in generation and regulation of biological rhythms in vertebrates and invertebrates. Experientia 49: 648–653

    Google Scholar 

  • Costa EJX, Harzer Lopes R, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J Pineal Res 19: 123–126

    Google Scholar 

  • Dring MJ (1984) Photoperiodism and phycology. Progr Phycol Res 3: 159–192

    Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18: 28–31

    CAS  PubMed  Google Scholar 

  • Fuhrberg B, Hardeland R (1995) 5-Methoxytryptophol in Gonyaulax polyedra. In: Hardeland R (ed) Cellular rhythms and indoleamines. University of Göttingen, Göttingen, pp 25–27

    Google Scholar 

  • Fuhrberg B, Hardeland R, Poeggeler B, Behrmann G (1995) Melatonin rises dramatically in Gonyaulax exposed to decreased temperature: implications for photoperiodic cyst induction. Biol Rhythm Res 26: 391

    Google Scholar 

  • Gwinner E, Hau M, Heigl S (1994) Phasic and tonic effects of melatonin on avian circadian systems. In: Hiroshige T, Honma K (eds) Evolution of circadian clock. Hokkaido University Press, Sapporo, pp 127–137

    Google Scholar 

  • Hardeland R (1993) The presence and function of melatonin and structurally related indoleamines in a dinoflagellate, and a hypothesis on the evolutionary significance of these tryptophan metabolites in unicellulars. Experientia 49: 614–22

    Google Scholar 

  • Hardeland R, Rodríguez C (1995) Versatile melatonin: A pervasive molecule serves various functions in signaling and protection. Chronobiol Int 12: 157–165

    Google Scholar 

  • Hardeland R, Pöggeler B, Balzer I, Behrmann G (1993a) A hypothesis on the evolutionary origins of photoperiodism based on circadian rhythmicity of melatonin in phylogenetically distant organisms. In: Gutenbrunner C, Hildebrandt G, Moog R (eds) Chronobiology and chronomedicine. Lang, Frankfurt/M., pp 113–120

    Google Scholar 

  • Hardeland R, Reiter RJ, Poeggeler B, Tan D-X (1993b) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive susbtances. Neurosci Biobehav Res 17: 347–357

    Google Scholar 

  • Hardeland R, Balzer I, Poeggeler B, Fuhrberg B, Uría H, Behrmann G, Wolf R, Meyer TJ, Reiter RJ (1995) On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photoxidation, and scavenging of free radicals. J Pineal Res 18: 104–11

    Google Scholar 

  • Huether G (1993) The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia 49: 665–670

    Google Scholar 

  • Kirst GO (1990) Salinity tolerance of eukaryotic marine algae. Annu Rev Plant Physiol Plant Mol Biol 41: 21–53

    Google Scholar 

  • Kolár J, Machácková I, Illnerová H, Prinsen E, van Dongen W, van Onckelen HA (1995) Melatonin in higher plant determined by radioimmunassay and liquid chromatography-mass spectrometry. Biol Rhythm Res 26: 406

    Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80: 2587

    Google Scholar 

  • Lerner A, Case JD, Heinzelman RV (1959) Structure of melatonin. J Am Chem Soc 81: 6084–6087

    Google Scholar 

  • Liming K (1990) Seaweeds. Their environment, biogeography, and ecophysiology. Wiley, New York

    Google Scholar 

  • Lüning K (1991) Circannual growth rhythm in a brown alga, Pterygophora californica. Bot. Acta 104: 157–162

    Google Scholar 

  • Lüning K (1992) Day and night kinetics of growth rate in green, brown, and red seaweeds. J Phycol 28: 794–803

    Google Scholar 

  • Lüning K (1994) Circadian growth rhythm in juvenile sporophytes of Laminariales (Phaeophyta). J Phycol 30: 190–199

    Google Scholar 

  • Lüning K, Dring MJ (1975) Reproduction, growth and photosynthesis of gametophytes of Laminaria saccharina grown in blue and red light. Mar Biol 29: 195–200

    Google Scholar 

  • Matthews CD, Guerin MV, Deed JR (1993) Melatonin and photoperiodic time measurement: seasonal breeding in the sheep. J Pineal Res 14: 105–116

    Google Scholar 

  • Menendez-Pelaez A, Poeggeler B, Reiter RJ, Barlow-Walden L, Pablos MI, Tan D-X (1993) Nuclear localization of melatonin in different mammalian tissues: immunocytochemical and radioimmunoassay evidence. J Cell Biochem 53: 373–383

    CAS  PubMed  Google Scholar 

  • Menendez-Pelaez A, Reiter RJ (1993) Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res 15: 59–69

    Google Scholar 

  • Poeggeler B, Balzer I, Hardeland R, Lerchl A (1991) Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 78: 268–269

    Google Scholar 

  • Poeggeler B, Hardeland R (1994) Detection and quantification of melatonin in a dinoflagellate, Gonyaulax polyedra: solutions to the problem of methoxyindole destruction in non-vertebrate material. J Pineal Res 17: 1–10

    Google Scholar 

  • Poeggeler B, Reiter RJ, Tan D-X, Chen L-D, Manchester LC (1993) Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J Pineal Res 14: 151–168

    Google Scholar 

  • Quay WB (1963a) Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiod. Gen Comp Endocrinol 3: 473–479

    Google Scholar 

  • Quay WB (1963b) Differential spectrofluorometric measurements of diverse 5-hydroxyand 5-methoxyindoles. Analyt Biochem 5: 51–59

    Google Scholar 

  • Reiter RJ (1991) The chemical expression of darkness. Mol Cell Endocrinol 79: C153–159

    Google Scholar 

  • Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49: 654–664

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. The principles and practice of statistics in biological research. Second edition. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Starr R, Zeikus JA (1978) UTEX — The culture collection of algae at the University of Texas at Austin. J Phycol 23 (suppl): 1–47

    Google Scholar 

  • Taylor G, Davies WJ (1985) The control of leaf growth of Betula and Acer by photoenvironment. New Phytol 101: 259–268

    Google Scholar 

  • Van Tassel DL, Li J, O'Neill SD (1993) Melatonin: identification of a potential dark signals in plants. Plant Physiol 102 (suppl 1): 659

    Google Scholar 

  • Van Volkenburgh E, Cleland RE (1990) Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. I. Growth can occur without photosynthesis. Planta 182: 72–76

    Google Scholar 

  • Van Volkenburgh E, Cleland RE, Watanabe M (1990) Light-stimulated cell expansion in bean (Phaseolus vulgaris L.) leaves. II. Quantity and quality of light required. Planta 182: 77–80

    Google Scholar 

  • Vaughan GM, Reiter RJ (1986) Pineal dependence of the Syrian hamster's nocturnal serum melatonin surge. J Pineal Res 3: 9–14

    Google Scholar 

  • Vivien-Roels B, Pévet P (1986) Is melatonin an evolutionary conservative molecule involved in the transduction of photoperiodic information in all living organisms? Adv Pineal Res 1: 61–68

    Google Scholar 

  • Vivien-Roels B, Pévet P (1993) Melatonin: presence and formation in invertebrates. Experientia 49, 642–647

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

K.L. and A.W. thank Petra Kadel for help with algal cultivation and evaluation of the experiments.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrberg, B., Balzer, I., Hardeland, R. et al. The vertebrate pineal hormone melatonin is produced by the brown alga Pterygophora californica and mimics dark effects on growth rate in the light. Planta 200, 125–131 (1996). https://doi.org/10.1007/BF00196659

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196659

Key words

Navigation