Log in

Bacterial transferrin receptors — structure, function and contribution to virulence

  • Mini review
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Agiato L-A, Dyer DW (1992) Siderophore production and membrane alterations by Bordetella pertussis in response to iron starvation. Infect Immun 60:117–123

    Google Scholar 

  2. Aisen P (1989) Physical biochemistry of the transferrins: Update, 1984–1988. In: Loehr TM (ed) Iron carriers and proteins. Physical Bioinorganic Chemistry Series, vol 5. VCH Publishers, New York, pp 353–371

    Google Scholar 

  3. Ala'Aldeen DA, Davies HA, Wall RA, Borriello SP (1990) The 70 kilodalton iron-regulated protein of Neisseria meningitidis is not the human transferrin receptor. FEMS Microbiol Lett 69:37–42

    Google Scholar 

  4. Albritton WL (1982) Infections due to Haemophilus species other than H. influenzae. Annu Rev Microbiol 11:199–216

    Google Scholar 

  5. Alderete JF, Peterson KM, Baseman JB (1988) Affinities of Treponema pallidum for human lactoferrin and transferrin. Genitourin Med 64:359–363

    Google Scholar 

  6. Alderton G, Ward WH, Fevold HL (1946) Identification of the bacteria-inhibiting iron-binding protein of egg white as conalbumin. Arch Biochem Biophys 11:9–13

    Google Scholar 

  7. Anderson BF, Baker HM, Norris GE, Rumball SV, Baker EN (1990) Apolactoferrin structure demonstrates ligand-induced conformational change in transferrins. Nature 344:784–787

    Google Scholar 

  8. Archibald FS, DeVoe IW (1979) Removal of iron from human transferrin by Neisseria meningitidis. FEMS Microbiol Lett 6:159–162

    Google Scholar 

  9. Archibald FS, DeVoe IW (1980) Iron acquisition by Neisseria meningitidis in vitro. Infect Immun 27:322–334

    Google Scholar 

  10. Arioso P, Cairo G, Levi S (1989) The molecular biology of iron-binding proteins. In: DeSousa M, Brock JH (eds) Iron in immunity, cancer and inflammation. John Wiley & Sons, Chichester, pp 55–79

    Google Scholar 

  11. Bailey S, Evans RW, Garratt RC, Gorinsky B, Hasnain S, Horsburgh C, Jhoti H, Lindley PF, Mydin A, Sarra R, Watson JL (1988) Molecular structure of serum transferrin at 3.3 Å resolution. Biochemistry 27:5804–5812

    Google Scholar 

  12. Bali PK, Aisen P (1992) Receptor-induced switch in site-site cooperativity during iron release by transferrin. Biochemistry 31:3963–3967

    Google Scholar 

  13. Bhanerjhee-Bhatnagar N, Frasch CE (1990) Expression of Neisseria meningitidis iron-regulated outer membrane proteins, including a 70-kilodalton transferrin receptor, and their potential for use as vaccines. Infect Immun 58:2875–2881

    Google Scholar 

  14. Bezkorovainy A (1987) Iron proteins. In: Bullen JJ, Griffiths E (eds) Iron and infection: molecular physiological and clinical aspects. John Wiley & Sons, Chichester, pp 27–67

    Google Scholar 

  15. Biberstein EL (1981) Haemophilus-Pasteurella-Actinobacillus: their significance in veterinary medicine. In: Kilian M, Fredericksen W, Biberstein EL (eds) Haemophilus, Pasteurella and Actinobacillus. Academic Press, London, pp 61–73

    Google Scholar 

  16. Black JR, Dyer DW, Thompson MK, Sparling PF (1986) Human immune response to iron-repressible outer membrane proteins of Neisseria meningitidis. Infect Immun 54:710–713

    Google Scholar 

  17. Blanton KJ, Biswas GD, Tsai J, Adams J, Dyer DW, Davies SM, Koch GC, Sen PK, Sparling PF (1990) Genetic evidence that Neisseria gonorrhoeae produces specific receptors for transferrin and lactoferrin. J Bacteriol 172:5225–5235

    Google Scholar 

  18. Bullen JJ (1981) The significance of iron in infection. Rev Infect Dis 3:1127–1137

    Google Scholar 

  19. Cornelissen CN, Biswas GD, Tsai J, Paruchuri DK, Thompson SA, Sparling PF (1992) Gonococcal transferrin-binding protein 1 is required for transferrin utilization and is homologous to Ton B-dependent outer membrane receptors. J Bacteriol 174:5788–5797

    Google Scholar 

  20. Crichton RR (1990) Proteins of iron storage and transport. Adv Protein Chem 40:281–363

    Google Scholar 

  21. De Jong G, Van Eijk HG (1989) Functional properties of the carbohydrate moeity of human transferrin. Int J Biochem 21:253–263

    Google Scholar 

  22. Deneer HG, Potter AA (1989) Iron-repressible outer membrane proteins of Pasteurella haemolytica. J Gen Microbiol 135:435–443

    Google Scholar 

  23. Do S-I, Enns C, Cummings RD (1990) Human transferrin receptor contains O-linked oligosaccharides. J Biol Chem 265:114–125

    Google Scholar 

  24. Donachie W, Gilmour NJL (1988) Sheep antibody response to cell wall antigens expressed in vivo by Pasteurella haemolytica serotype A2. FEMS Microbiol Lett 56:271–276

    Google Scholar 

  25. Dyer DW, West EP, McKenna W, Thompson SA, Sparling PF (1988) A pleotropic iron-uptake mutant of Neisseria meningitidis lacks a 70-kDa iron-regulated protein. Infect Immun 56:977–983

    Google Scholar 

  26. Enns CA, Sussman HH (1981) Physical characterisation of the transferrin receptor in human placentae. J Biol Chem 256:9820–9823

    Google Scholar 

  27. Evans RW, Williams J (1980) The electrophoresis of transferrins in urea/polyacrylamide gels. Biochem J 189:541–546

    Google Scholar 

  28. Evans RW, Aitken A, Patel KJ (1988) Evidence for a single glycan moeity in rabbit serum transferrin and location of the glycan within the polypeptide chain. FEBS Lett 238:39–42

    Google Scholar 

  29. Ferreiros CM, Criado MT, Del Rio MC, Pintor M (1991) Analysis of the molecular mass heterogeneity of the transferrin receptor of Neisseria meningitidis and commensal Neisseria. FEMS Microbiol Lett 83:247–254

    Google Scholar 

  30. Gerlach GF, Anderson C, Potter AA, Klashinsky S, Willson PJ (1992) Cloning and expression of a transferrin-binding protein from Actinobacillus pleuropneumoniae. Infect Immun 60:892–898

    Google Scholar 

  31. Gerlach GF, Kashinsky S, Anderson C, Potter AA, Willson PJ (1992) Characterisation of two genes encoding distinct transferrin-binding proteins in different Actinobacillus pleuropneumoniae isolates. Infect Immun 60:3253–3261

    Google Scholar 

  32. Gonzales GC, Caamano DL, Schryvers AB (1990) Identification and characterisation of a porcine-specific transferrin receptor in Actinobacillus pleuropneumoniae. Mol Microbiol 4:1173–1179

    Google Scholar 

  33. Gorringe AR, Woods G, Robinson A (1990) Growth and siderophore production by Bordetella pertussis under iron-restricted conditions. FEMS Microbiol Lett 66:101–106

    Google Scholar 

  34. Griffiths E (1987) Iron in biological systems. In: Bullen JJ, Griffiths E (eds) Iron and infection: molecular, physiological and clinical aspects. John Wiley & Sons, Chichester, pp 1–26

    Google Scholar 

  35. Griffiths E (1987) The iron-uptake systems of pathogenic bacteria. In: Bullen JJ, Griffiths E (eds) Iron and infection: molecular physiological and clinical aspects. John Wiley & Sons, Chichester, pp 69–138

    Google Scholar 

  36. Griffiths E (1989) The regulation of bacterial virulence genes by environmental signals. Curr Opin Infect Dis 2:819–826

    Google Scholar 

  37. Griffiths E (1991) Iron and bacterial virulence — a brief overview. Biol Metals 4:7–13

    Google Scholar 

  38. Griffiths E, Stevenson P, Ray A (1990) Antigenic and molecular heterogeneity of the transferrin-binding protein of Neisseria meningitidis. FEMS Microbiol Lett 69:31–36

    Google Scholar 

  39. Griffiths E, Stevenson P, Ala'Aldeen DA, Borriello SP, Holland J, Parsons T, Williams P (1992) Cross-reacting human antibodies to transferrin-binding protein 2 (TBP2) of Haemophilus influenzae and Neisseria meningitidis. In: Neisseriae 1992, Cuernava, Mexico (in press)

  40. Griffiths E, Stevenson P, Byfield P, Ala'Aldeen DA, Borriello SP, Holland J, Parsons T, Williams P (1992) N-terminal amino acid sequences of meningococcal transferrin-binding proteins 1 and 2: cross-reactivity of anti-peptide antibodies with transferrin-binding proteins of Neisseria meningitidis, N. gonorrhoeae and Haemophilus species. In: Neisseriae 1992, Cuernava, Mexico (in press)

  41. Harris DC, Aisen P (1989) Physical biochemistry of the transferrins. In: Loehr TM (ed) Iron carriers and proteins. Physical Bioinorganic Chemistry Series, vol 5. VCH Publishers, New York, pp 239–351

    Google Scholar 

  42. Herrington DA, Sparling PF (1985) Haemophilus influenzae can use human transferrin as a sole source for required iron. Infect Immun 48:248–251

    Google Scholar 

  43. Heubers H, Finch CA (1987) The physiology of transferrin and transferrin receptors. Physiol Rev 67:520–582

    Google Scholar 

  44. Holbein BE (1981) Enhancement of Neisseria meningitidis infection in mice by the addition of iron bound to transferrin. Infect Immun 34:120–125

    Google Scholar 

  45. Holland J, Towner KJ, Williams P (1991) Isolation and characterisation of Haemophilus influenzae type b mutants defective in transferrin-binding and iron assimilation. FEMS Microbiol Lett 77:283–288

    Google Scholar 

  46. Holland J, Langford P, Towner KJ, Williams P (1992) Evidence for in vivo expression of transferrin-binding proteins in Haemophilus influenzae type b. Infect Immun 60:2986–2991

    Google Scholar 

  47. Holland J, Towner KJ, Williams P (1992) Tn916 insertion mutagenesis in Escherichia coli and Haemophilus influenzae type b following conjugative transfer. J Gen Microbiol 138:509–515

    Google Scholar 

  48. Hunt RC, Riegler R, Davis AA (1989) Changes in glycosylation alter the affinity of the human transferrin receptor for its ligand. J Biol Chem 264:9643–9648

    Google Scholar 

  49. Kluger MJ, Bullen JJ (1987) Clinical and physiological aspects. In: Bullen JJ, Griffiths E (eds) Iron and infectin: molecular physiological and clinical aspects. John Wiley & Sons, Chichester, pp 243–282

    Google Scholar 

  50. Lee BC, Bryan LE (1989) Identification and comparative analysis of the lactoferrin and transferrin receptors among clinical isolates of gonococci. J Med Microbiol 28:199–204

    Google Scholar 

  51. Legrand D, Mazurier J, Montreuil J, Spik G (1988) Structure and conformation of the iron-binding sites of transferrins. Biochimie 70:1185–1195

    Google Scholar 

  52. Lestas AN (1976) The effect of pH on human transferrin: selective labelling of the two iron-binding sites. Br J Haematol 32:341–350

    Google Scholar 

  53. MacGillivray RTA, Mendez A, Sinha SK, Sutton MR, Lineback-Zins J, Brew K (1983) The primary structure of human serum transferrin. J Biol Chem 258:3543–3553

    Google Scholar 

  54. Maeda K, McKenzie HA, Shaw DC (1980) Nature of the heterogeneity within genetic variants of bovine serum transferrin. Anim Blood Groups Biochem Genet 11:63–80

    Google Scholar 

  55. McKenna WR, Mickelsen PA, Sparling PF, Dyer DW (1988) Iron uptake from lactoferrin and transferrin by Neisseria gonorrhoeae. Infect Immun 56:785–791

    Google Scholar 

  56. Menozzi FD, Gantiez C, Locht C (1991) Identification and purification of transferrin- and lactoferrin-binding proteins of Bordetella pertussis and Bordetella bronchiseptica. Infect Immun 59:3982–3988

    Google Scholar 

  57. Mickelsen PA, Sparling PF (1981) Ability of Neisseria gonorrhoeae, Neisseria meningitidis and commensal Neisseria species to obtain iron from lactoferrin. Infect Immun 35:915–920

    Google Scholar 

  58. Mickelsen PA, Blackman E, Sparling PF (1982) Ability of Neisseria gonorrhoeae, Neisseria meningitidis and commensal Neisseria species to obtain iron from transferrin and iron compounds. Infect Immun 33:555–564

    Google Scholar 

  59. Mietzner TA, Luginbuhl GH, Sandstrom E, Morse SA (1984) Identification of an iron-regulated 37000 dalton protein in the cell envelope of Neisseria gonorrhoeae. Infect Immun 45:410–416

    Google Scholar 

  60. Modun B, Williams P (1992) Characterisation of staphylococcal transferrin-binding proteins. Abstracts of the American Science and Microbiology, 92nd Annual Meeting of the American Society for Microbiology, New Orleans, May 1992, American Society for Microbiology, Washington, p 43

    Google Scholar 

  61. Morse SA, Chen C-Y, LeFaou A, Mietzner TA (1988) A potential role for the major iron-regulated protein expressed by pathogenic Neisseria species. Rev Infect Dis 10 [Suppl-2]: S306-S310

    Google Scholar 

  62. Morse SA, Berish SA, Chen C-Y, Trees DL, Mietzner TA, Genco GA, Kapczynski D (1991) Structure, function and regulation of the iron-binding protein Fbp. In: Achtman M, Kohl P, Marchai C, Morelli G, Seiler A, Thiesen T (eds) Neisseriae 1990. Walter de Gruyter, New York, pp 453–458

    Google Scholar 

  63. Morton DJ, Williams P (1989) Utilisation of transferrin bound iron by Haemophilus species of human and porcine origin. FEMS Microbiol Lett 65:123–128

    Google Scholar 

  64. Morton DJ, Williams P (1990) Siderophore-independent acquisition of transferrin-bound iron by Haemophilus influenzae type b. J Gen Microbiol 136:927–933

    Google Scholar 

  65. Naidu AS, Andersson M, Forsgren A (1992) Identification of a human lactoferrin-binding protein in Staphylococcus aureus. J Med Microbiol 36:177–183

    Google Scholar 

  66. Niven DF, Donga J, Archibald FS (1989) Responses of Haemophilus pleuropneumoniae to iron-restriction: changes in the outer membrane protein profile and the removal of iron from porcine transferrin. Mol Microbiol 3:1083–1089

    Google Scholar 

  67. Norqvist A, Davies J, Norlander L, Normark S (1978) The effect of iron starvation on the outer membrane protein composition of Neisseria gonorrhoeae. FEMS Microbiol Lett 4:71–75

    Google Scholar 

  68. Norrod P, Williams RP (1978) Growth of Neisseria gonorrhoeae in media deficient in iron without detection of siderophores. Curr Microbiol 1:281–284

    Google Scholar 

  69. Ogunnariwo JA, Schryvers AB (1990) Iron acquisition in Pasteurella haemolytica: expression and identification of a bovine-specific transferrin receptor. Infect Immun 58:2091–2097

    Google Scholar 

  70. Ogunnariwo JA, Cheng C, Ford J, Schryvers AB (1990) Response of Haemophilus somnus to iron limitation: expression and identification of a bovine-specific transferrin receptor. Microb Pathogen 9:397–406

    Google Scholar 

  71. Omary MB, Trowbridge IS (1981) Covalent binding of fatty acid to the transferrin receptor in cultured human cells. J Biol Chem 256:4715–4718

    Google Scholar 

  72. Osborne TB, Campbell GF (1900) The protein constituents of egg white. J Am Chem Soc 22:422–450

    Google Scholar 

  73. Padda JS, Schryvers AB (1990) N-linked oligosaccharides of human transferrin are not required for binding to bacterial transferrin receptors. Infect Immun 58:2972–2976

    Google Scholar 

  74. Pidcock KA, Wooten JA, Daley BA, Stull TL (1988) Iron acquisition by Haemophilus influenzae. Infect Immun 56:721–725

    Google Scholar 

  75. Princiotto JV, Zapolski EJ (1975) Difference between the two iron-binding sites of transferrin. Nature 255:87–88

    Google Scholar 

  76. Redhead K, Hill T (1991) Acquisition of iron from transferrin by Bordetella pertussis. FEMS Microbiol Lett 77:303–308

    Google Scholar 

  77. Redhead K, Hill T, Chart H (1987) Interaction of lactoferrin and transferrin with the outer membrane of Bordetella pertussis. J Gen Microbiol 133:891–898

    Google Scholar 

  78. Ricard MA, Archibald FS, Niven DF (1991) Isolation and identification of a putative porcine transferrin receptor from Actinobacillus pleuropneumoniae biotype 1. J Gen Microbiol 137:2733–2740

    Google Scholar 

  79. Romslo I, Thorstensen K (1990) The role of transferrin in the mechanism of cellular iron uptake. Biochem J 271:1–10

    Google Scholar 

  80. Schade AL, Caroline L (1944) Raw hen egg white and the role of iron in growth inhibition of Shigella dysenteriae, Staphylococcus aureus, Escherichia coli and Saccharomyces cerevisiae. Science 100:14–15

    Google Scholar 

  81. Schade AL, Caroline L (1946) An iron-binding component of human blood plasma. Science 104:340–341

    Google Scholar 

  82. Schaeffer E, Lucero MA, Jeltsch JM, Py M-C, Levin MJ, Chambon P, Cohen GN, Zakin MM (1987) Complete structure of the human transferrin gene. Comparison with analogous chicken gene and human pseudogene. Gene 56:109–116

    Google Scholar 

  83. Schneider C, Williams JC (1985) Molecular dissection of the human transferrin receptor. J Cell Sci 3:139–149

    Google Scholar 

  84. Schryvers AB (1988) Characterisation of the human transferrin receptor and lactoferrin receptors in Haemophilus influenzae. Mol Microbiol 2:467–472

    Google Scholar 

  85. Schryvers AB (1989) Identification of the transferrin and lactoferrin-binding proteins in Haemophilus influenzae. J Med Microbiol 29:121–130

    Google Scholar 

  86. Schryvers AB, Gonzalez GC (1989) Comparison of the abilities of different protein sources of iron to enhance Neisseria meningitidis infection in mice. Infect Immun 57:2425–2429

    Google Scholar 

  87. Schryvers AB, Gray-Owen S (1992) Iron acquisition in Haemophilus influenzae: receptors for human transferrin. J Infect Dis 165 [Suppl]:S103-S104

    Google Scholar 

  88. Schryvers AB, Lee BC (1989) Comparative analysis of the transferrin and lactoferrin binding proteins in the family Neisseriaceae. Can J Microbiol 35:409–415

    Google Scholar 

  89. Schryvers AB, Morris LJ (1988) Identification and characterisation of the human lactoferrin-binding protein from Neisseria meningitidis. Infect Immun 56:1144–1149

    Google Scholar 

  90. Schryvers AB, Morris LJ (1988) Identification and characterisation of the transferrin-receptor from Neisseria meningitidis. Mol Microbiol 2:281–288

    Google Scholar 

  91. Seligman PA, Schleicher RB, Allen RH (1979) Isolation and characterisation of transferrin receptor from human placenta. J Biol Chem 254:9943–9947

    Google Scholar 

  92. Simonsen C, Brener D, De Voe IW (1982) Expression of a high affinity mechanism for acquisition of transferrin iron by Neisseria meningitidis. Infect Immun 36:107–113

    Google Scholar 

  93. Spik G, Coddeville B, Legrand D, Mazurier J, Goavec M, Montreuil J (1985) A comparative study of the primary structure of glycans from various serolacto- and ovotransferrins. Role of human lactotransferrin glycans. In: Spik G, Montreuil J, Crichton RR, Mazurier J (eds) Proteins of iron storage and transport. Elsevier, Amsterdam, pp 47–51

    Google Scholar 

  94. Stevenson P, Williams P, Griffiths E (1992) Common antigenic domains in transferrin-binding protein 2 of Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae type b. Infect Immun 60:2391–2396

    Google Scholar 

  95. Sutherland AD, Jones GE, Poxton IR (1990) The susceptibility of in-vivo grown Pasteurella haemolytica to ovine defence mechanisms in vitro. FEMS Microbiol Immunol 64:269–278

    Google Scholar 

  96. Tryon VV, Baseman JB (1987) The acquisition of human lactoferrin by Mycoplasma pneumoniae. Microb Pathogen 3:437–443

    Google Scholar 

  97. Tsai J, Dyer DW, Sparling PF (1988) Loss of transferrin receptor activity in Neisseria meningitidis correlates with inability to use transferrin as an iron source. Infect Immun 56:3132–3138

    Google Scholar 

  98. Turk DC (1984) The pathogenicity of Haemophilus influenzae. J Med Microbiol 18:1–16

    Google Scholar 

  99. Van der Heul C, Kroos MJ, van Noort WL, van Eijk HG (1981) No functional difference of the two iron-binding sites of human transferrin in vitro. Clin Science 60:185–190

    Google Scholar 

  100. Weinberg ED (1978) Iron and infection. Microbiol Rev 42:45–66

    Google Scholar 

  101. Weinberg ED (1984) Iron withholding: a defense against infection and neoplasia. Physiol Rev 64:65–102

    Google Scholar 

  102. West SEH, Sparling PF (1985) Response of Neisseria gonorrhoeae to iron limitation: alterations in expression of membrane proteins without apparent siderophore production. Infect Immun 47:388–394

    Google Scholar 

  103. White DC, Granick S (1963) Hemin biosynthesis in Haemophilus. J Bacteriol 85:842–850

    Google Scholar 

  104. Williams J (1982) The evolution of transferrin. Trends Biochem Sci 7:394–397

    Google Scholar 

  105. Williams P (1988) Role of the cell envelope in bacterial adaptation to growth in vivo in infections. Biochimie 70:987–1011

    Google Scholar 

  106. Williams P, Brown MRW (1986) Influence of iron-restriction on growth and the expression of outer membrane proteins by Haemophilus influenzae and H. parainfluenzae. FEMS Microbiol Lett 33:153–157

    Google Scholar 

  107. Williams P, Morton DJ, Towner KJ, Stevenson P, Griffiths E (1990) Utilisation of enterobactin and other exogenous iron sources by Haemophilus influenzae, H. parainfluenzae and H. paraphrophilus. J Gen Microbiol 136:2346–2350

    Google Scholar 

  108. Yang F, Lum JB, McGill JR, Moore CM, Naylor SL, van Bragt PH, Baldwin WD, Bowman BH (1984) Human transferrin: cDNA characterization and chromosomal location. Proc Natl Acad Sci USA 81:2752–2756

    Google Scholar 

  109. Yu R-H, Gray-Owen SD, Ogunnariwo J, Schryvers AB (1992) Interaction of ruminant transferrins with transferrin receptors in bovine isolates of Pasteurella haemolytica and Haemophilus somnus. Infect Immun 60:2992–2994

    Google Scholar 

  110. Zak O, Aisen P (1986) Non-random distribution of iron in circulating human transferrin. Blood 68:157–161

    Google Scholar 

  111. Zak O, Leibman A, Aisen P (1983) Metal-binding properties of a single-sited transferrin fragment. Biochim Biophys Acta 742:490–495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, P., Griffiths, E. Bacterial transferrin receptors — structure, function and contribution to virulence. Med Microbiol Immunol 181, 301–322 (1992). https://doi.org/10.1007/BF00191543

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00191543

Keywords

Navigation