Log in

Therapeutic Strategies to Treat or Prevent Off Episodes in Adults with Parkinson’s Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a chronic, neurodegenerative disease, which manifests with a mixture of motor, cognitive and behavioural symptoms. Levodopa is the most effective antiparkinsonian treatment to date, although chronic use engenders a mixture of complications in a substantial proportion of patients. Amongst these is the occurrence of episodes of worsening symptoms—‘off’ phenomena. These episodes can manifest with either motor or non-motor symptoms or a combination of these features and have been found to have profound impacts on patients’ quality of life. Although preventative measures are poorly evidenced, avoiding excessive total daily levodopa intake in selected populations that are deemed to be of a higher risk for develo** these episodes warrants further exploration. Methods to improve levodopa bioavailability and delivery to the brain are currently available and are of value in addressing these episodes once they have become established. These include modifications to levodopa formulations as well as the use of complimentary agents that improve levodopa bioavailability. The deployment of device-assisted approaches is a further dimension that can be considered in addressing these debilitating episodes. This review summarises the clinical manifestations of ‘off’ phenomena and the current approaches to treat them. Although we briefly discuss clinical advances on the horizon, the predominant focus is on existing, established treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Mayeux R, et al. The frequency of idiopathic Parkinson’s disease by age, ethnic group, and sex in northern Manhattan, 1988–1993. Am J Epidemiol. 1996;143(5):528 (Am. J. Epidemiol: 1995).

    Google Scholar 

  2. Hughes AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathologic study of 100 cases of parkinson’s disease. Arch Neurol. 1993;50(2):140–8.

    CAS  PubMed  Google Scholar 

  3. Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol. 2008. https://doi.org/10.1111/j.1468-1331.2008.02056.x.

    PubMed  Google Scholar 

  4. Poewe W, et al. Parkinson disease. Nat Rev Dis Prim. 2017. https://doi.org/10.1038/nrdp.2017.13.

    PubMed  Google Scholar 

  5. Cotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism—chronic treatment with L-dopa. N Engl J Med. 1969. https://doi.org/10.1056/NEJM196902132800701.

    PubMed  Google Scholar 

  6. Cotzias GC, Van Woert MH, Schiffer LM. “Aromatic amino acids and modification of parkinsonism. N Engl J Med. 1967. https://doi.org/10.1056/NEJM196702162760703.

    PubMed  Google Scholar 

  7. Fahn S. The history of dopamine and levodopa in the treatment of Parkinson’s disease. Mov Disord. 2008. https://doi.org/10.1002/mds.22028.

    PubMed  Google Scholar 

  8. Obeso JA, Rodriguez-Oroz MC, Chana P, Lera G, Rodriguez M, Olanow CW. The evolution and origin of motor complications in Parkinson’s disease. Neurology. 2000;55(11 Suppl 4):S13–20.

    CAS  PubMed  Google Scholar 

  9. Jankovic J. Motor fluctuations and dyskinesias in Parkinson’s disease: clinical manifestations. Mov Disord. 2005. https://doi.org/10.1002/mds.20458.

    PubMed  Google Scholar 

  10. Martinez-Martin P, et al. Prevalence of nonmotor symptoms in Parkinson’s disease in an international setting; study using nonmotor symptoms questionnaire in 545 patients. Mov Disord. 2007. https://doi.org/10.1002/mds.21586.

    PubMed  Google Scholar 

  11. Shulman LM, Taback RL, Bean J, Weiner WJ. Comorbity of the nonmotor symptoms of Parkinson’s disease. Mov Disord. 2001. https://doi.org/10.1002/mds.1099.

    PubMed  Google Scholar 

  12. Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet. 1977. https://doi.org/10.1016/S0140-6736(77)91146-1.

    PubMed  Google Scholar 

  13. Merello M, Lees AJ. Beginning-of-dose motor deterioration following the acute administration of levodopa and apomorphine in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1992. https://doi.org/10.1136/jnnp.55.11.1024.

    PubMed  PubMed Central  Google Scholar 

  14. Melamed E, Bitton V, Zelig O. Delayed onset of responses to single doses of L-Dopa in Parkinsonian fluctuators on long-term L-Dopa therapy. Clin Neuropharmacol. 1986. https://doi.org/10.1097/00002826-198604000-00009.

    PubMed  Google Scholar 

  15. Witjas T, et al. Nonmotor fluctuations in Parkinson’s disease: frequent and disabling. Neurology. 2002. https://doi.org/10.1212/WNL.59.3.408.

    PubMed  Google Scholar 

  16. Stacy M. The wearing-off phenomenon and the use of questionnaires to facilitate its recognition in Parkinson’s disease. J Neural Transm. 2010. https://doi.org/10.1007/s00702-010-0424-5.

    PubMed  Google Scholar 

  17. Chaudhuri KR, et al. The nondeclaration of nonmotor symptoms of Parkinson’s disease to health care professionals: an international study using the nonmotor symptoms questionnaire. Mov Disord. 2010. https://doi.org/10.1002/mds.22868.

    PubMed  PubMed Central  Google Scholar 

  18. Martínez-Fernández R, Schmitt E, Martinez-Martin P, Krack P. The hidden sister of motor fluctuations in Parkinson’s disease: a review on nonmotor fluctuations. Mov Disord. 2016. https://doi.org/10.1002/mds.26731.

    PubMed  Google Scholar 

  19. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001. https://doi.org/10.1002/mds.1090.

    PubMed  Google Scholar 

  20. Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees AJ. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology. 2008. https://doi.org/10.1212/01.wnl.0000310812.43352.66.

    PubMed  Google Scholar 

  21. Hauser RA, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord. 2007. https://doi.org/10.1002/mds.21743.

    PubMed  Google Scholar 

  22. Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL. The Sydney Multicenter Study of Parkinson’s disease: the inevitability of dementia at 20 years. Mov Disord. 2008. https://doi.org/10.1002/mds.21956.

    PubMed  Google Scholar 

  23. Rizos A, et al. Characterizing motor and non-motor aspects of early-morning off periods in Parkinson’s disease: an international multicenter study. Parkinsonism Relat Disord. 2014. https://doi.org/10.1016/j.parkreldis.2014.09.013.

    PubMed  Google Scholar 

  24. Merims D, Djaldetti R, Melamed E. Waiting for ON: a major problem in patients with Parkinson disease and ON/OFF motor fluctuations. Clin Neuropharmacol. 2003. https://doi.org/10.1097/00002826-200307000-00009.

    PubMed  Google Scholar 

  25. Hauser RA, et al. Sublingual apomorphine (APL-130277) for the acute conversion of OFF to ON in Parkinson’s disease. Mov Disord. 2016. https://doi.org/10.1002/mds.26697.

    PubMed  Google Scholar 

  26. Van Lunen B, Anthony J, Spears J. Implications of motor fluctuations in Parkinson’s disease patients on chronic therapy (IMPACT): results from an observational registry. Mov Disord. 2005;20:S146.

    Google Scholar 

  27. Storch A, et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology. 2013. https://doi.org/10.1212/WNL.0b013e318285c0ed.

    PubMed  Google Scholar 

  28. Brown RG, et al. Depression and anxiety related subtypes in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2011. https://doi.org/10.1136/jnnp.2010.213652.

    PubMed  Google Scholar 

  29. Marras C, Chaudhuri KR. Nonmotor features of Parkinson’s disease subtypes. Mov Disord. 2016. https://doi.org/10.1002/mds.26510.

    PubMed  PubMed Central  Google Scholar 

  30. Chaudhuri KR, Poewe W, Brooks D. Motor and nonmotor complications of levodopa: phenomenology, risk factors, and imaging features. Mov Disord. 2018. https://doi.org/10.1002/mds.27386.

    Google Scholar 

  31. Hillen ME, Sage JI. Nonmotor fluctuations in patients with Parkinson’s disease. Neurology. 1996. https://doi.org/10.1212/WNL.47.5.1180.

    PubMed  Google Scholar 

  32. Picillo M, et al. Gender and non motor fluctuations in Parkinson’s disease: a prospective study. Parkinsonism Relat Disord. 2016. https://doi.org/10.1016/j.parkreldis.2016.04.001.

    PubMed  Google Scholar 

  33. Fahn S, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004. https://doi.org/10.1056/NEJMoa033447.

    PubMed  Google Scholar 

  34. Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, et al. Initiating levodopa/carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol. 2010;68(1):18–27.

    CAS  PubMed  Google Scholar 

  35. Olanow CW, et al. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013. https://doi.org/10.1002/mds.25364.

    PubMed  Google Scholar 

  36. Schrag A, Quinn N. Dyskinesias and motor fluctuations in Parkinson’s disease: a community-based study. Brain. 2000. https://doi.org/10.1093/brain/123.11.2297.

    PubMed  Google Scholar 

  37. Foltynie T, et al. BDNF val66met influences time to onset of levodopa induced dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2009. https://doi.org/10.1136/jnnp.2008.154294.

    PubMed  Google Scholar 

  38. De Lau LML, Verbaan D, Marinus J, Heutink P, Van Hilten JJ. Catechol-O-methyltransferase Val158Met and the risk of dyskinesias in Parkinson’s disease. Mov Disord. 2012. https://doi.org/10.1002/mds.23805.

    PubMed  Google Scholar 

  39. Lee JY, Cho J, Lee EK, Park SS, Jeon BS. Differential genetic susceptibility in diphasic and peak-dose dyskinesias in Parkinson’s disease. Mov Disord. 2011. https://doi.org/10.1002/mds.23400.

    PubMed  PubMed Central  Google Scholar 

  40. Schumacher-Schuh AF, et al. Association of common genetic variants of HOMER1 gene with levodopa adverse effects in Parkinson’s disease patients. Pharmacogenom J. 2014. https://doi.org/10.1038/tpj.2013.37.

    Google Scholar 

  41. Politis M, Wu K, Molloy S, Bain PG, Chaudhuri KR, Piccini P. Parkinson’s disease symptoms: the patient’s perspective. Mov Disord. 2010. https://doi.org/10.1002/mds.23135.

    PubMed  Google Scholar 

  42. Chapuis S, Ouchchane L, Metz O, Gerbaud L, Durif F. Impact of the motor complications of Parkinson’s disease on the quality of life. Mov Disord. 2005. https://doi.org/10.1002/mds.20279.

    PubMed  Google Scholar 

  43. Hung SW, Adeli GM, Arenovich T, Fox SH, Lang AE. Patient perception of dyskinesia in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2010. https://doi.org/10.1136/jnnp.2009.173286.

    PubMed  Google Scholar 

  44. Storch A, et al. Quantitative assessment of non-motor fluctuations in Parkinson’s disease using the Non-Motor Symptoms Scale (NMSS). J Neural Transm. 2015. https://doi.org/10.1007/s00702-015-1437-x.

    PubMed  Google Scholar 

  45. Nutt JG, Woodward WR, Carter JH, Gancher ST. Effect of long-term therapy on the pharmacodynamics of levodopa: relation to on-off phenomenon. Arch Neurol. 1992. https://doi.org/10.1001/archneur.1992.00530350037016.

    PubMed  Google Scholar 

  46. Nutt JG, Holford NHG. The response to levodopa in Parkinson’s disease: imposing pharmacological law and order. Ann Neurol. 1996. https://doi.org/10.1002/ana.410390504.

    PubMed  Google Scholar 

  47. Nutt JG, Carter JH, Lea ES, Sexton GJ. Evolution of the response to levodopa during the first 4 years of therapy. Ann Neurol. 2002. https://doi.org/10.1002/ana.10189.

    PubMed  Google Scholar 

  48. Zappia M, et al. Loss of long-duration response to levodopa over time in PD: implications for wearing-off. Neurology. 1999. https://doi.org/10.1212/wnl.52.4.763.

    PubMed  Google Scholar 

  49. Stocchi F. The hypothesis of the genesis of motor complications and continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Parkinsonism Relat Disord. 2009. https://doi.org/10.1016/S1353-8020(09)70005-7.

    PubMed  Google Scholar 

  50. Nutt JG, Woodward WR, Hammerstad JP, Carter JH, Anderson JL. The On–Off phenomenon in Parkinson’s disease: relation to levodopa absorption and transport. N Engl J Med. 1984. https://doi.org/10.1056/NEJM198402233100802.

    PubMed  Google Scholar 

  51. Edwards LL, Quigley EMM, Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease: frequency and pathophysiology. Neurology. 1992. https://doi.org/10.1212/wnl.42.4.726.

    PubMed  Google Scholar 

  52. Baruzzi A, et al. Infuence of meal ingestion time on pharmacokinetics of orally administered levodopa in parkinsonian patients. Clin Neuropharmacol. 1987. https://doi.org/10.1097/00002826-198712000-00004.

    PubMed  Google Scholar 

  53. Leon AS, Spiegel HE. The effect of antacid administration on the absorption and metabolism of levodopa. J Clin Pharmacol New Drugs. 1972. https://doi.org/10.1002/j.1552-4604.1972.tb00053.x.

    PubMed  Google Scholar 

  54. Valenzuela JE. Dopamine as a possible neurotransmitter in gastric relaxation. Gastroenterology. 1976. https://doi.org/10.1016/S0016-5085(76)80051-0.

    PubMed  Google Scholar 

  55. Frackowiak RS, Leenders KL, Poewe WH, Palmer AJ, Brenton DP. Inhibition of L-18Ffluorodopa uptake into human brain by amino acids demonstrated by positron emission tomography. Ann Neurol. 1986;20(2):258–62.

    PubMed  Google Scholar 

  56. Çamcı G, Oğuz S. Association between Parkinson’s disease and Helicobacter pylori. J Clin Neurol (Korea). 2016. https://doi.org/10.3988/jcn.2016.12.2.147.

    PubMed Central  Google Scholar 

  57. van Kessel SP, El Aidy S. Contributions of gut bacteria and diet to drug pharmacokinetics in the treatment of Parkinson’s disease. Front Neurol. 2019. https://doi.org/10.3389/fneur.2019.01087.

    PubMed  PubMed Central  Google Scholar 

  58. Fabbnni G, Mouradian MM, Junecos JL, Schlegel J, Mohr E, Chase TN. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms, Part I. Ann Neurol. 1988. https://doi.org/10.1002/ana.410240303.

    Google Scholar 

  59. Mouradian MM, Junecos JL, Fabbrini G, Schlegel J, Bartko JJ, Chase TN. Motor fluctuations in Parkinson’s disease: central pathophysiological mechanisms, part II. Ann Neurol. 1988. https://doi.org/10.1002/ana.410240304.

    PubMed  Google Scholar 

  60. Bravi D, Mouradian MM, Roberts JW, Davis TL, Sohn YH, Chase TN. Wearing-off fluctuations in Parkinson’s disease: contribution of postsynaptic mechanisms. Ann Neurol. 1994. https://doi.org/10.1002/ana.410360108.

    PubMed  Google Scholar 

  61. Barbato L, et al. The long-duration action of levodopa may be due to a postsynaptic effect. Clin Neuropharmacol. 1997. https://doi.org/10.1097/00002826-199710000-00003.

    PubMed  Google Scholar 

  62. Stocchi F, Vacca L, Berardelli A, De Pandis F, Ruggieri S. Long-duration effect and the postsynaptic compartment: study using a dopamine agonist a short half-life. Mov Disord. 2001. https://doi.org/10.1002/mds.1070.

    PubMed  Google Scholar 

  63. Bergstrom BP, Garris PA. ‘Passive stabilization’ of striatal extracellular dopamine across the lesion spectrum encompassing the presymptomatic phase of Parkinson’s disease: a voltammetric study in the 6-OHDA-lesioned rat. J Neurochem. 2003. https://doi.org/10.1046/j.1471-4159.2003.02104.x.

    PubMed  Google Scholar 

  64. Abercrombie ED, Bonatz AE, Zigmond MJ. Effects of l-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res. 1990. https://doi.org/10.1016/0006-8993(90)91318-B.

    PubMed  Google Scholar 

  65. Chase TN, Baronti F, Fabbrini G, Heuser IJ, Juncos JL, Mouradian MM. Rationale for continuous dopaminomimetic therapy of Parkinson’s disease. Neurology. 1989;39(11 Suppl 2):7–10.

    CAS  PubMed  Google Scholar 

  66. De La Fuente-Fernndez R, et al. Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol. 2001. https://doi.org/10.1002/ana.65.

    Google Scholar 

  67. Obeso JA, et al. The origin of motor fluctuations in Parkinson’s disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology. 2004. https://doi.org/10.1212/wnl.62.1_suppl_1.s17.

    PubMed  Google Scholar 

  68. Chaudhuri KR, Rizos A, Sethi KD. Motor and nonmotor complications in Parkinson’s disease: an argument for continuous drug delivery? J Neural Transm. 2013. https://doi.org/10.1007/s00702-013-0981-5.

    PubMed  PubMed Central  Google Scholar 

  69. Brown P, Marsden CD. What do the basal ganglia do? Lancet. 1998. https://doi.org/10.1016/S0140-6736(97)11225-9.

    PubMed  Google Scholar 

  70. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain. 2005. https://doi.org/10.1093/brain/awh445.

    PubMed  Google Scholar 

  71. Halliday GM, Leverenz JB, Schneider JS, Adler CH. The neurobiological basis of cognitive impairment in Parkinson’s disease. Mov Disord. 2014. https://doi.org/10.1002/mds.25857.

    PubMed  PubMed Central  Google Scholar 

  72. Lim SY, Fox SH, Lang AE. Overview of the extranigral aspects of Parkinson disease. Arch Neurol. 2009. https://doi.org/10.1001/archneurol.2008.561.

    PubMed  Google Scholar 

  73. Verschuur CVM, et al. Randomized delayed-start trial of levodopa in Parkinson’s disease. N Engl J Med. 2019. https://doi.org/10.1056/NEJMoa1809983.

    PubMed  Google Scholar 

  74. Hsu A, Yao HM, Gupta S, Modi NB. Comparison of the pharmacokinetics of an oral extended-release capsule formulation of carbidopa-levodopa (IPX066) with immediate-release carbidopa-levodopa (Sinemet®), sustained-release carbidopa-levodopa (Sinemet® CR), and carbidopa–levodopa–entacapone (Stalevo®). J Clin Pharmacol. 2015. https://doi.org/10.1002/jcph.514.

    PubMed  PubMed Central  Google Scholar 

  75. Goetze O, Wieczorek J, Mueller T, Przuntek H, Schmidt WE, Woitalla D. Impaired gastric emptying of a solid test meal in patients with Parkinson’s disease using 13C-sodium octanoate breath test. Neurosci Lett. 2005. https://doi.org/10.1016/j.neulet.2004.11.007.

    PubMed  Google Scholar 

  76. Destée A, Rérat K, Bourdeix I. Is there a difference between levodopa/dopa-decarboxylase inhibitor and entacapone and levodopa/dopa-decarboxylase inhibitor dose fractionation strategies in Parkinson’s disease patients experiencing symptom re-emergence due to wearing-off? The honeymoon study. Eur Neurol. 2009. https://doi.org/10.1159/000177938.

    PubMed  Google Scholar 

  77. Carter JH, Nutt JG, Woodward WR, Hatcher LF, Trotman TL. Amount and distribution of dietary protein affects clinical response to levodopa in Parkinson’s disease. Neurology. 1989. https://doi.org/10.1212/wnl.39.4.552.

    PubMed  Google Scholar 

  78. Cereda E, Barichella M, Pedrolli C, Pezzoli G. Low-protein and protein-redistribution diets for Parkinson’s disease patients with motor fluctuations: a systematic review. Mov Disord. 2010. https://doi.org/10.1002/mds.23226.

    PubMed  Google Scholar 

  79. Burn DJ, et al. Decreased ‘OFF’ time and improved Parkinson’s disease symptoms with the gastroprokinetic camicinal as an adjunct to L-DOPA based treatment; a pilot study. Mov Disord. 2015. https://doi.org/10.1002/mds.26295.

    PubMed  PubMed Central  Google Scholar 

  80. Cotzias GC, Papavasiliou PS, Gellene R. Experimental treatment of parkinsonism with L-Dopa. Neurology. 1968;18(3):276–7.

    CAS  PubMed  Google Scholar 

  81. LeWitt PA, et al. Pharmacokinetic–pharmacodynamic crossover comparison of two levodopa extension strategies. Mov Disord. 2009. https://doi.org/10.1002/mds.22587.

    PubMed  Google Scholar 

  82. Dupont E, et al. Sustained-release Madopar HBS® compared with standard Madopar® in the long-term treatment of de novo parkinsonian patients. Acta Neurol Scand. 2009. https://doi.org/10.1111/j.1600-0404.1996.tb00163.x.

    PubMed  Google Scholar 

  83. Block G, Liss C, Reines S, Irr J, Nibbelink D. Comparison of immediate-release and controlled release carbidopa/levodopa in Parkinson’s disease. A multicenter 5-year study. The CR First Study Group. Eur Neurol. 1997;37(1):23–7.

    CAS  PubMed  Google Scholar 

  84. Mittur A, Gupta S, Modi NB. Pharmacokinetics of Rytary®, an extended-release capsule formulation of carbidopa–levodopa. Clin Pharmacokinet. 2017. https://doi.org/10.1007/s40262-017-0511-y.

    PubMed  PubMed Central  Google Scholar 

  85. Yao HM, Hsu A, Gupta S, Modi NB. Clinical pharmacokinetics of IPX066: evaluation of dose proportionality and effect of food in healthy volunteers. Clin Neuropharmacol. 2016. https://doi.org/10.1097/WNF.0000000000000126.

    PubMed  PubMed Central  Google Scholar 

  86. Morgan JC, Dhall R, Rubens R, Khanna S, Gupta S. Dosing patterns during conversion to IPX066, extended-release carbidopa–levodopa (ER CD-LD), in Parkinson’s disease with motor fluctuations. Parkinsons Dis. 2018. https://doi.org/10.1155/2018/9763057.

    PubMed  PubMed Central  Google Scholar 

  87. Hauser RA, et al. Extended-release carbidopa–levodopa (IPX066) compared with immediate-release carbidopa-levodopa in patients with Parkinson’s disease and motor fluctuations: a phase 3 randomised, double-blind trial. Lancet Neurol. 2013. https://doi.org/10.1016/S1474-4422(13)70025-5.

    PubMed  Google Scholar 

  88. Pahwa R, et al. Randomized trial of IPX066, carbidopa/levodopa extended release, inearly Parkinson’s disease. Parkinsonism Relat Disord. 2014. https://doi.org/10.1016/j.parkreldis.2013.08.017.

    PubMed  Google Scholar 

  89. Metman LV, Stover N, Chen C, Cowles VE, Sweeney M. Gastroretentive carbidopa/levodopa, DM-1992, for the treatment of advanced Parkinson’s disease. Mov Disord. 2015. https://doi.org/10.1002/mds.26219.

    PubMed  Google Scholar 

  90. LeWitt PA. New levodopa therapeutic strategies. Parkinsonism Relat Disord. 2016. https://doi.org/10.1016/j.parkreldis.2015.09.021.

    PubMed  Google Scholar 

  91. LeWitt PA, et al. Accordion pill carbidopa/levodopa (AP-CD/LD) for treatment of advanced PD. Mov Disord. 2014. https://doi.org/10.1002/mds.25914.

    PubMed  Google Scholar 

  92. Navon N, Gendreau R, Meckler J. Gastric retention of the accordion Pill™: results from MRI studies with Parkinson’s disease patients and healthy volunteers [abstract]. Mov Disord. 2018;33(suppl 2).

  93. LeWitt PA, Giladi N, Navon N. Pharmacokinetics and efficacy of a novel formulation of carbidopa-levodopa (Accordion Pill®) in Parkinson’s disease. Parkinsonism Relat Disord. 2019. https://doi.org/10.1016/j.parkreldis.2019.05.032.

    PubMed  Google Scholar 

  94. LeWitt P, Gendreau R, Meckler J, Navon N. Design of a phase 3 efficacy and safety trial of accordion Pill™ carbidopa/levodopa for Parkinson’s disease (PD) patients experiencing motor fluctuations [abstract]. Mov Disord. 2018;33(suppl 2).

  95. Kuoppamäki M, Leinonen M, Poewe W. Efficacy and safety of entacapone in levodopa/carbidopa versus levodopa/benserazide treated Parkinson’s disease patients with wearing-off. J Neural Transm. 2015. https://doi.org/10.1007/s00702-015-1449-6.

    PubMed  Google Scholar 

  96. Rinne UK, Larsen JP, Siden Å, Worm-Petersen J. Entacapone enhances the response to levodopa in parkinsonian patients with motor fluctuations. Neurology. 1998. https://doi.org/10.1212/WNL.51.5.1309.

    PubMed  Google Scholar 

  97. Poewe WH, Deuschl G, Gordin A, Kultalahti ER, Leinonen M. Efficacy and safety of entacapone in Parkinson’s disease patients with suboptimal levodopa response: a 6-month randomized placebo controlled double blind study in Germany and Austria (Celomen study). Acta Neurol Scand. 2002. https://doi.org/10.1034/j.1600-0404.2002.1o174.x.

    PubMed  Google Scholar 

  98. Brooks DJ, Sagar H. Entacapone is beneficial in both fluctuating and non-fluctuating patients with Parkinson’s disease: a randomised, placebo controlled, double blind, six month study. J Neurol Neurosurg Psychiatry. 2003. https://doi.org/10.1136/jnnp.74.8.1071.

    PubMed  PubMed Central  Google Scholar 

  99. Ceravolo R, Piccini P, Bailey DL, Jorga KM, Bryson H, Brooks DJ. 18F-dopa PET evidence that tolcapone acts as a central COMT inhibitor in Parkinson’s disease. Synapse. 2002. https://doi.org/10.1002/syn.10034.

    PubMed  Google Scholar 

  100. Adler CH, et al. Randomized, placebo-controlled study of tolcapone in patients with fluctuating Parkinson disease treated with levodopa–carbidopa. Arch Neurol. 1998. https://doi.org/10.1001/archneur.55.8.1089.

    PubMed  Google Scholar 

  101. Assal F, Spahr L, Hadengue A, Rubbici-Brandt L, Burkhard PR. Tolcapone and fulminant hepatitis. Lancet. 1998. https://doi.org/10.1016/S0140-6736(05)61511-5.

    PubMed  Google Scholar 

  102. Ferreira JJ, et al. Summary of the recommendations of the EFNS/MDS-ES review on therapeutic management of Parkinson’s disease. Eur J Neurol. 2013. https://doi.org/10.1111/j.1468-1331.2012.03866.x.

    PubMed  Google Scholar 

  103. Ferreira JJ, et al. Effect of opicapone on levodopa pharmacokinetics, catechol-O-methyltransferase activity and motor fluctuations in patients with Parkinson’s disease. Eur J Neurol. 2015. https://doi.org/10.1111/ene.12666.

    PubMed  Google Scholar 

  104. Rocha JF, et al. Effect of opicapone and entacapone upon levodopa pharmacokinetics during three daily levodopa administrations. Eur J Clin Pharmacol. 2014. https://doi.org/10.1007/s00228-014-1701-2.

    PubMed  Google Scholar 

  105. Lees AJ, et al. Opicapone as adjunct to levodopa therapy in patients with Parkinson disease and motor fluctuations a randomized clinical trial. JAMA Neurol. 2017. https://doi.org/10.1001/jamaneurol.2016.4703.

    PubMed  PubMed Central  Google Scholar 

  106. Ferreira JJ, Lees A, Rocha JF, Poewe W, Rascol O, Soares-da-Silva P. Opicapone as an adjunct to levodopa in patients with Parkinson’s disease and end-of-dose motor fluctuations: a randomised, double-blind, controlled trial. Lancet Neurol. 2016. https://doi.org/10.1016/S1474-4422(15)00336-1.

    PubMed  Google Scholar 

  107. Elmer LW. Rasagiline adjunct therapy in patients with Parkinson’s disease: Posthoc analyses of the PRESTO and LARGO trials. Parkinsonism Relat Disord. 2013. https://doi.org/10.1016/j.parkreldis.2013.06.001.

    PubMed  Google Scholar 

  108. Schwid SR. A randomized placebo-controlled trial of rasagiline in levodopa-treated patients with Parkinson disease and motor fluctuations: the PRESTO study. Arch Neurol. 2005. https://doi.org/10.1001/archneur.62.2.241.

    PubMed  Google Scholar 

  109. Rascol O, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet. 2005. https://doi.org/10.1016/S0140-6736(05)71083-7.

    PubMed  Google Scholar 

  110. Fox SH, et al. International Parkinson and movement disorder society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018. https://doi.org/10.1002/mds.27372.

    PubMed  PubMed Central  Google Scholar 

  111. Heinonen EH, Myllylä V. Safety of selegiline (Deprenyl) in the treatment of Parkinson’s disease. Drug Saf. 1998. https://doi.org/10.2165/00002018-199819010-00002.

    PubMed  Google Scholar 

  112. Richard IH, Kurlan R, Tanner C, Factor S, Hubble J, Suchowersky O, Waters C. Serotonin syndrome and the combined use of deprenyl and an antidepressant in Parkinson's disease. Neurology. 1997;48(4):1070–7.

    CAS  PubMed  Google Scholar 

  113. Panisset M, Chen JJ, Rhyee SH, Conner J, Mathena J. Serotonin toxicity association with concomitant antidepressants and rasagiline treatment: retrospective study (STACCATO). Pharmacotherapy. 2014. https://doi.org/10.1002/phar.1500.

    PubMed  Google Scholar 

  114. Caccia C, et al. Safinamide: From molecular targets to a new anti-Parkinson drug. Neurology. 2006. https://doi.org/10.1212/wnl.67.7_suppl_2.s18.

    PubMed  Google Scholar 

  115. Borgohain R, et al. Randomized trial of safinamide add-on to levodopa in Parkinson’s disease with motor fluctuations. Mov Disord. 2014. https://doi.org/10.1002/mds.25751.

    PubMed  Google Scholar 

  116. Schapira AHV, et al. Assessment of safety and efficacy of safinamide as a levodopa adjunct in patients with Parkinson disease and motor fluctuations a randomized clinical trial. JAMA Neurol. 2017. https://doi.org/10.1001/jamaneurol.2016.4467.

    PubMed  PubMed Central  Google Scholar 

  117. Borgohain R, et al. Two-year, randomized, controlled study of safinamide as add-on to levodopa in mid to late Parkinson’s disease. Mov Disord. 2014. https://doi.org/10.1002/mds.25961.

    PubMed  Google Scholar 

  118. Binde CD, Tvete IF, Gåsemyr J, Natvig B, Klemp M. A multiple treatment comparison meta-analysis of monoamine oxidase type B inhibitors for Parkinson’s disease. Br J Clin Pharmacol. 2018. https://doi.org/10.1111/bcp.13651.

    PubMed  PubMed Central  Google Scholar 

  119. Kvernmo T, Härtter S, Burger E. A review of the receptor-binding and pharmacokinetic properties of dopamine agonists. Clin Ther. 2006. https://doi.org/10.1016/j.clinthera.2006.08.004.

    PubMed  Google Scholar 

  120. Jenner P. Pharmacology of dopamine agonists in the treatment of Parkinson’s disease. Neurology. 2002. https://doi.org/10.1212/wnl.58.suppl_1.s1.

    PubMed  Google Scholar 

  121. Piercey MF. Pharmacology of pramipexole, a dopamine D3-preferring agonist useful in treating Parkinson’s disease. Clin Neuropharmacol. 1998;21(3):141–51.

    CAS  PubMed  Google Scholar 

  122. Hoehn MMM, Elton RL. Low dosages of bromocriptine added to levodopa in Parkinson’s disease. Neurology. 1985. https://doi.org/10.1212/wnl.35.2.199.

    PubMed  Google Scholar 

  123. Stocchi F, et al. Ropinirole 24-hour prolonged release and ropinirole immediate release in early Parkinson’s disease: a randomized, double-blind, non-inferiority crossover study. Curr Med Res Opin. 2008. https://doi.org/10.1185/03007990802387130.

    PubMed  Google Scholar 

  124. Pahwa R, et al. Ropinirole 24-hour prolonged release: randomized, controlled study in advanced Parkinson disease. Neurology. 2007. https://doi.org/10.1212/01.wnl.0000258660.74391.c1.

    PubMed  Google Scholar 

  125. Poewe W, et al. Extended-release pramipexole in early Parkinson disease A 33-week randomized controlled trial. Neurology. 2011. https://doi.org/10.1212/WNL.0b013e31822affb0.

    PubMed  Google Scholar 

  126. Schapira AHV, et al. Extended-release pramipexole in advanced Parkinson disease: a randomized controlled trial. Neurology. 2011. https://doi.org/10.1212/WNL.0b013e31822affdb.

    PubMed  Google Scholar 

  127. Elshoff JP, Cawello W, Andreas JO, Mathy FX, Braun M. An update on pharmacological, pharmacokinetic properties and drug-drug interactions of rotigotine transdermal system in Parkinson’s disease and restless legs syndrome. Drugs. 2015. https://doi.org/10.1007/s40265-015-0377-y.

    PubMed  PubMed Central  Google Scholar 

  128. Trenkwalder C, et al. Rotigotine effects on early morning motor function and sleep in Parkinson’s disease: a double-blind, randomized, placebo-controlled study (RECOVER). Mov Disord. 2011. https://doi.org/10.1002/mds.23441.

    PubMed  Google Scholar 

  129. Kassubek J, et al. Rotigotine transdermal system and evaluation of pain in patients with Parkinson’s disease: a post hoc analysis of the RECOVER study. BMC Neurol. 2014. https://doi.org/10.1186/1471-2377-14-42.

    PubMed  PubMed Central  Google Scholar 

  130. Hirano M, Isono C, Sakamoto H, Ueno S, Kusunoki S, Nakamura Y. Rotigotine transdermal patch improves swallowing in dysphagic patients with Parkinson’s disease. Dysphagia. 2015. https://doi.org/10.1007/s00455-015-9622-5.

    PubMed  Google Scholar 

  131. Tateno H, et al. Transdermal dopamine agonist ameliorates gastric emptying in Parkinson’s disease. J Am Geriatr Soc. 2015. https://doi.org/10.1111/jgs.13800.

    PubMed  Google Scholar 

  132. Lee JY, et al. Association between the dose of dopaminergic medication and the behavioral disturbances in Parkinson disease. Parkinsonism Relat Disord. 2010. https://doi.org/10.1016/j.parkreldis.2009.12.002.

    PubMed  Google Scholar 

  133. Rabinak CA, Nirenberg MJ. Dopamine agonist withdrawal syndrome in parkinson disease. Arch Neurol. 2010. https://doi.org/10.1001/archneurol.2009.294.

    PubMed  Google Scholar 

  134. Nirenberg MJ. Dopamine agonist withdrawal syndrome: implications for patient care. Drugs Aging. 2013. https://doi.org/10.1007/s40266-013-0090-z.

    PubMed  Google Scholar 

  135. Antonini A, Poewe W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol. 2007. https://doi.org/10.1016/S1474-4422(07)70218-1.

    PubMed  Google Scholar 

  136. Rizos A, et al. A European multicentre survey of impulse control behaviours in Parkinson’s disease patients treated with short- and long-acting dopamine agonists. Eur J Neurol. 2016. https://doi.org/10.1111/ene.13034.

    PubMed  Google Scholar 

  137. Garcia-Ruiz PJ, et al. Impulse control disorder in patients with Parkinson’s disease under dopamine agonist therapy: a multicentre study. J Neurol Neurosurg Psychiatry. 2014. https://doi.org/10.1136/jnnp-2013-306787.

    PubMed  Google Scholar 

  138. Shulman LM, Minagar A, Rabinstein A, Weiner WJ. The use of dopamine agonists in very elderly patients with Parkinson’s disease. Mov Disord. 2000. https://doi.org/10.1002/1531-8257(200007)15:4%3c664:AID-MDS1010%3e3.0.CO;2-D.

    PubMed  Google Scholar 

  139. Saint-Cyr JA, Trépanier LL. Beneficial effects of amantodine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord. 2000. https://doi.org/10.1002/1531-8257(200009)15:5%3c873:AID-MDS1017%3e3.0.CO;2-I.

    PubMed  Google Scholar 

  140. Metman LV, Del Dotto P, Van Den Munckhof P, Fang J, Mouradian MM, Chase TN. Amantadine as treatment for dyskinesias and motor fluctuations in Parkinson’s disease. Neurology. 1998. https://doi.org/10.1212/wnl.50.5.1323.

    Google Scholar 

  141. Malkani R, Zadikoff C, Melen O, Videnovic A, Borushko E, Simuni T. Amantadine for freezing of gait in patients with parkinson disease. Clin Neuropharmacol. 2012. https://doi.org/10.1097/WNF.0b013e31826e3406.

    PubMed  PubMed Central  Google Scholar 

  142. Thomas A, Iacono D, Luciano AL, Armellino K, Di Iorio A, Onofrj M. Duration of amantadine benefit on dyskinesia of severe Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2004;75(1):141–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Ory-Magne F, et al. Withdrawing amantadine in dyskinetic patients with Parkinson disease: the AMANDYSK trial. Neurology. 2014. https://doi.org/10.1212/WNL.0000000000000050.

    PubMed  Google Scholar 

  144. Hauser RA, et al. Pharmacokinetics of ADS-5102 (Amantadine) extended release capsules administered once daily at bedtime for the treatment of dyskinesia. Clin Pharmacokinet. 2019. https://doi.org/10.1007/s40262-018-0663-4.

    PubMed  Google Scholar 

  145. Pahwa R, et al. ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson disease (EASE LID study): a randomized clinical trial. JAMA Neurol. 2017. https://doi.org/10.1001/jamaneurol.2017.0943.

    PubMed  PubMed Central  Google Scholar 

  146. Oertel W, et al. Randomized, placebo-controlled trial of ADS-5102 (amantadine) extended-release capsules for levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov Disord. 2017. https://doi.org/10.1002/mds.27131.

    PubMed  PubMed Central  Google Scholar 

  147. Pahwa R, et al. Amantadine extended release for levodopa-induced dyskinesia in Parkinson’s disease (EASED Study). Mov Disord. 2015. https://doi.org/10.1002/mds.26159.

    PubMed  PubMed Central  Google Scholar 

  148. Kase H. Industry forum: progress in pursuit of therapeutic A2A antagonists—the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson’s disease. Neurology. 2003. https://doi.org/10.1212/01.wnl.0000095219.22086.31.

    PubMed  Google Scholar 

  149. Hauser RA, et al. Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord. 2008. https://doi.org/10.1002/mds.22095.

    PubMed  Google Scholar 

  150. Mizuno Y, Kondo T. Adenosine A2A receptor antagonist istradefylline reduces daily OFF time in Parkinson’s disease. Mov Disord. 2013. https://doi.org/10.1002/mds.25418.

    PubMed  PubMed Central  Google Scholar 

  151. Takahashi M, Fujita M, Asai N, Saki M, Mori A. Safety and effectiveness of istradefylline in patients with Parkinson’s disease: interim analysis of a post-marketing surveillance study in Japan. Expert Opin Pharmacother. 2018. https://doi.org/10.1080/14656566.2018.1518433.

    PubMed  Google Scholar 

  152. Kondo T, Mizuno Y. A long-term study of istradefylline safety and efficacy in patients with parkinson disease. Clin Neuropharmacol. 2015. https://doi.org/10.1097/WNF.0000000000000073.

    PubMed  Google Scholar 

  153. Murata M, et al. Zonisamide improves wearing-off in Parkinson’s disease: a randomized, double-blind study. Mov Disord. 2015. https://doi.org/10.1002/mds.26286.

    PubMed  Google Scholar 

  154. Fornadi F, Milani F, Werner M. Madopar dispersible in the treatment of advanced Parkinson’s disease. Clin Neuropharmacol. 1995. https://doi.org/10.1097/00002826-199417003-00003.

    Google Scholar 

  155. Jansson Y, Eriksson B, Johnels B. Dispersible levodopa has a fast and more reproducible onset of action than the conventional preparation in Parkinson’s disease. A study with optoelectronic movement analysis. Parkinsonism Relat Disord. 1998. https://doi.org/10.1016/s1353-8020(98)00036-4.

    PubMed  Google Scholar 

  156. Auffret M, Drapier S, Vérin M. Pharmacological insights into the use of apomorphine in Parkinson’s disease: clinical relevance. Clin Drug Investig. 2018. https://doi.org/10.1007/s40261-018-0619-3.

    PubMed  Google Scholar 

  157. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther. 2002. https://doi.org/10.1124/jpet.102.039867.

    PubMed  Google Scholar 

  158. Jenner P, Katzenschlager R. Apomorphine—pharmacological properties and clinical trials in Parkinson’s disease. Parkinsonism Relat Disord. 2016. https://doi.org/10.1016/j.parkreldis.2016.12.003.

    PubMed  Google Scholar 

  159. Gancher ST, Nutt JG, Woodward WR. Absorption of apomorphine by various routes in parkinsonism. Mov Disord. 1991. https://doi.org/10.1002/mds.870060304.

    PubMed  Google Scholar 

  160. Nicolle E, et al. Pharmacokinetics of apomorphine in parkinsonian patients. Fundam Clin Pharmacol. 1993. https://doi.org/10.1111/j.1472-8206.1993.tb00238.x.

    PubMed  Google Scholar 

  161. Gancher ST, Woodward WR, Boucher B, Nutt JG. Peripheral pharmacokinetics of apomorphine in humans. Ann Neurol. 1989. https://doi.org/10.1002/ana.410260209.

    PubMed  Google Scholar 

  162. Corboy DL, Wagner ML, Sage JI. Apomorphine for motor fluctuations and freezing in Parkinson’s disease. Ann Pharmacother. 1995. https://doi.org/10.1177/106002809502900310.

    PubMed  Google Scholar 

  163. LeWitt PA. Subcutaneously administered apomorphine: pharmacokinetics and metabolism. Neurology. 2004. https://doi.org/10.1212/wnl.62.6_suppl_4.s8.

    PubMed  Google Scholar 

  164. Dewey RB, Hutton JT, LeWitt PA, Factor SA. A randomized, double-blind, placebo-controlled trial of subcutaneously injected apomorphine for parkinsonian off-state events. Arch Neurol. 2001. https://doi.org/10.1001/archneur.58.9.1385.

    PubMed  Google Scholar 

  165. Gunzler SA, Koudelka C, Carlson NE, Pavel M, Nutt JG. Effect of low concentrations of apomorphine on parkinsonism in a randomized, placebo-controlled, crossover study. Arch Neurol. 2008. https://doi.org/10.1001/archneurol.2007.58.

    PubMed  PubMed Central  Google Scholar 

  166. Pahwa R, Koller WC, Trosch RM, Sherry JH. Subcutaneous apomorphine in patients with advanced Parkinson’s disease: a dose-escalation study with randomized, double-blind, placebo-controlled crossover evaluation of a single dose. J Neurol Sci. 2007. https://doi.org/10.1016/j.jns.2007.03.013.

    PubMed  Google Scholar 

  167. Merello M, Pikielny R, Cammarota A, Leiguarda R. Comparison of subcutaneous apomorphine versus dispersible madopar latency and effect duration in Parkinson’s disease patients: a double-blind single-dose study. Clin Neuropharmacol. 1997. https://doi.org/10.1097/00002826-199704000-00008.

    PubMed  Google Scholar 

  168. Isaacson S, Lew M, Ondo W, Hubble J, Clinch T, Pagan F. Apomorphine subcutaneous injection for the management of morning akinesia in Parkinson’s disease. Mov Disord Clin Pract. 2017. https://doi.org/10.1002/mdc3.12350.

    PubMed  Google Scholar 

  169. Stibe CMH, Kempster PA, Lees AJ, Stern GM. Subcutaneous apomorphine in parkinsonian on–off oscillations. Lancet. 1988. https://doi.org/10.1016/S0140-6736(88)91193-2.

    PubMed  Google Scholar 

  170. Stibe C, Lees A, Stern G. Subcutaneous infusion of apomorphine and lisuride in the treatment of parkinsonian on-off fluctuations. Lancet. 1987. https://doi.org/10.1016/S0140-6736(87)91660-6.

    PubMed  Google Scholar 

  171. Frankel JP, Lees AJ, Kempster PA, Stern GM. Subcutaneous apomorphine in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1990. https://doi.org/10.1136/jnnp.53.2.96.

    PubMed  PubMed Central  Google Scholar 

  172. LeWitt PA, Ondo WG, Van Lunen B, Bottini PB. Open-label study assessment of safety and adverse effects of subcutaneous apomorphine injections in treating ‘off’ episodes in advanced Parkinson disease. Clin Neuropharmacol. 2009. https://doi.org/10.1097/WNF.0b013e31816d91f9.

    PubMed  Google Scholar 

  173. Lees A. Dopamine agonists in Parkinson’s disease: a look at apomorphine. Fundam Clin Pharmacol. 1993. https://doi.org/10.1111/j.1472-8206.1993.tb00226.x.

    PubMed  Google Scholar 

  174. Martinez-Martin P, et al. Chronic subcutaneous infusion therapy with apomorphine in advanced Parkinson’s disease compared to conventional therapy: a real life study of non motor effect. J Parkinsons Dis. 2011. https://doi.org/10.3233/JPD-2011-11037.

    PubMed  Google Scholar 

  175. Grosset KA, Malek N, Morgan F, Grosset DG. Phase IIa randomized double-blind, placebo-controlled study of inhaled apomorphine as acute challenge for rescuing ‘off’ periods in patients with established Parkinson’s disease. Eur J Neurol. 2013. https://doi.org/10.1111/ene.12091.

    PubMed  Google Scholar 

  176. Grosset KA, Malek N, Morgan F, Grosset DG. Inhaled dry powder apomorphine (VR040) for ’off ’ periods in Parkinson’s disease: an in-clinic double-blind dose ranging study. Acta Neurol Scand. 2013. https://doi.org/10.1111/ane.12107.

    PubMed  Google Scholar 

  177. Grosset KA, Malek N, Morgan F, Grosset DG. Inhaled apomorphine in patients with ‘on-off’ fluctuations: a randomized, double-blind, placebo-controlled, clinic and home based, parallel-group study. J Parkinsons Dis. 2013. https://doi.org/10.3233/JPD-120142.

    PubMed  Google Scholar 

  178. Olanow CW, et al. Apomorphine sublingual film for off episodes in Parkinson’s disease: a randomised, double-blind, placebo-controlled phase 3 study. Lancet Neurol. 2020. https://doi.org/10.1016/S1474-4422(19)30396-5.

    PubMed  Google Scholar 

  179. Tambasco N, Romoli M, Calabresi P. Levodopa in Parkinson’s disease: current status and future developments. Curr Neuropharmacol. 2017. https://doi.org/10.2174/1570159x15666170510143821.

    Google Scholar 

  180. Taddei RN, Spinnato F, Jenner P. New symptomatic treatments for the management of motor and nonmotor symptoms of Parkinson’s disease. Int Rev Neurobiol. 2017;132:407–52.

    Google Scholar 

  181. LeWitt PA, et al. A randomized trial of inhaled levodopa (CVT-301) for motor fluctuations in Parkinson’s disease. Mov Disord. 2016. https://doi.org/10.1002/mds.26611.

    PubMed  PubMed Central  Google Scholar 

  182. Grosset D, et al. Long-term pulmonary safety of inhaled levodopa in Parkinson’s disease subjects with motor fluctuations: interim results of a phase 3 study. Parkinsonism Relat Disord. 2018. https://doi.org/10.1016/j.parkreldis.2017.11.287.

    PubMed  PubMed Central  Google Scholar 

  183. Antonini A, et al. Develo** consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson’s disease: a multi-country Delphi-panel approach. Curr Med Res Opin. 2018. https://doi.org/10.1080/03007995.2018.1502165.

    PubMed  Google Scholar 

  184. Bredberg E, et al. Intraduodenal infusion of a water-based levodopa dispersion for optimisation of the therapeutic effect in severe Parkinson’s disease. Eur J Clin Pharmacol. 1993. https://doi.org/10.1007/BF00315491.

    PubMed  Google Scholar 

  185. Nyholm D, et al. Optimizing levodopa pharmacokinetics: intestinal infusion versus oral sustained-release tablets. Clin Neuropharmacol. 2003. https://doi.org/10.1097/00002826-200305000-00010.

    PubMed  Google Scholar 

  186. Nyholm D, et al. Pharmacokinetics of levodopa, carbidopa, and 3-O-methyldopa following 16-hour jejunal infusion of levodopa-carbidopa intestinal gel in advanced Parkinson’s disease patients. AAPS J. 2013. https://doi.org/10.1208/s12248-012-9439-1.

    PubMed  Google Scholar 

  187. Vijiaratnam N, et al. Levodopa–carbidopa intestinal gel: is the naso-jejunal phase a redundant convention? Intern Med J. 2018. https://doi.org/10.1111/imj.13754.

    PubMed  Google Scholar 

  188. Zibetti M, et al. Sleep improvement with levodopa/carbidopa intestinal gel infusion in Parkinson disease. Acta Neurol Scand. 2013. https://doi.org/10.1111/ane.12075.

    PubMed  Google Scholar 

  189. Chang FCF, et al. 24h Levodopa–carbidopa intestinal gel may reduce falls and ‘unresponsive’ freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord. 2015. https://doi.org/10.1016/j.parkreldis.2014.12.019.

    PubMed  Google Scholar 

  190. Olanow CW, et al. Continuous intrajejunal infusion of levodopa-carbidopa intestinal gel for patients with advanced Parkinson’s disease: a randomised, controlled, double-blind, double-dummy study. Lancet Neurol. 2014. https://doi.org/10.1016/S1474-4422(13)70293-X.

    PubMed  Google Scholar 

  191. Standaert DG, et al. Effect of levodopa–carbidopa intestinal gel on non-motor symptoms in patients with advanced Parkinson’s disease. Mov Disord Clin Pract. 2017. https://doi.org/10.1002/mdc3.12526.

    PubMed  PubMed Central  Google Scholar 

  192. Fernandez HH, et al. Levodopa-carbidopa intestinal gel in advanced Parkinson’s disease: final 12-month, open-label results. Mov Disord. 2015. https://doi.org/10.1002/mds.26123.

    PubMed  PubMed Central  Google Scholar 

  193. Vijiaratnam N, Sue CM. Levodopa-carbidopa intestinal gel: ‘dismantling the road blocks of a journey’. Intern Med J. 2018. https://doi.org/10.1111/imj.13757.

    PubMed  Google Scholar 

  194. Vijiaratnam N, Sue CM. How do i manage patients with the levodopa/carbidopa intestinal gel? Mov Disord Clin Pract. 2019. https://doi.org/10.1002/mdc3.12701.

    PubMed  Google Scholar 

  195. Vijiaratnam N, Sue CM. Maximizing benefits of the levodopa/carbidopa intestinal gel: systematic considerations, challenging convention and individualizing approaches. Basal Ganglia. 2018. https://doi.org/10.1016/j.baga.2018.12.002.

    Google Scholar 

  196. Merola A, Romagnolo A, Zibetti M, Bernardini A, Cocito D, Lopiano L. Peripheral neuropathy associated with levodopa–carbidopa intestinal infusion: a long-term prospective assessment. Eur J Neurol. 2016. https://doi.org/10.1111/ene.12846.

    PubMed  Google Scholar 

  197. Rispoli V, et al. Peripheral neuropathy in 30 duodopa patients with vitamins B supplementation. Acta Neurol Scand. 2017. https://doi.org/10.1111/ane.12783.

    PubMed  Google Scholar 

  198. Rogers G, Davies D, Pink J, Cooper P. Parkinson’s disease: summary of updated NICE guidance. BMJ. 2017. https://doi.org/10.1136/bmj.j1951.

    PubMed  PubMed Central  Google Scholar 

  199. Bhidayasiri R, Sringean J, Anan C, Boonpang K, Thanawattano C, Chaudhuri KR. Quantitative demonstration of the efficacy of night-time apomorphine infusion to treat nocturnal hypokinesia in Parkinson’s disease using wearable sensors. Parkinsonism Relat Disord. 2016. https://doi.org/10.1016/j.parkreldis.2016.11.016.

    PubMed  Google Scholar 

  200. Trenkwalder C, et al. Expert Consensus Group report on the use of apomorphine in the treatment of Parkinson’s disease—clinical practice recommendations. Parkinsonism Relat Disord. 2015. https://doi.org/10.1016/j.parkreldis.2015.06.012.

    PubMed  Google Scholar 

  201. Renoux C, et al. Ventricular tachyarrhythmia and sudden cardiac death with domperidone use in Parkinson’s disease. Br J Clin Pharmacol. 2016. https://doi.org/10.1111/bcp.12964.

    PubMed  PubMed Central  Google Scholar 

  202. Kempster PA, Frankel JP, Stern GM, Lees AJ. Comparison of motor response to apomorphine and levodopa in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1990. https://doi.org/10.1136/jnnp.53.11.1004.

    PubMed  PubMed Central  Google Scholar 

  203. Gervason CL, Pollak PR, Limousin P, Perret JE. Reproducibility of motor effects induced by successive subcutaneous apomorphine injections in Parkinson’s disease. Clin Neuropharmacol. 1993. https://doi.org/10.1097/00002826-199304000-00003.

    PubMed  Google Scholar 

  204. Katzenschlager R, et al. Apomorphine subcutaneous infusion in patients with Parkinson’s disease with persistent motor fluctuations (TOLEDO): a multicentre, double-blind, randomised, placebo-controlled trial. Lancet Neurol. 2018. https://doi.org/10.1016/S1474-4422(18)30239-4.

    PubMed  Google Scholar 

  205. Martinez-Martin P, et al. EuroInf: a multicenter comparative observational study of apomorphine and levodopa infusion in Parkinson’s disease. Mov Disord. 2015. https://doi.org/10.1002/mds.26067.

    PubMed  Google Scholar 

  206. Deleu D, Hanssens Y, Northway MG. Subcutaneous apomorphine: an evidence-based review of its use in Parkinson’s disease. Drugs Aging. 2004. https://doi.org/10.2165/00002512-200421110-00001.

    PubMed  Google Scholar 

  207. Acland KM, Churchyard A, Fletcher CL, Turner K, Lees A, Dowd PM. Panniculitis in association with apomorphine infusion. Br J Dermatol. 1998. https://doi.org/10.1046/j.1365-2133.1998.02128.x.

    PubMed  Google Scholar 

  208. Skorvanek M, Bhatia KP. The skin and Parkinson’s disease: review of clinical, diagnostic, and therapeutic issues. Mov Disord Clin Pract. 2017. https://doi.org/10.1002/mdc3.12425.

    PubMed  PubMed Central  Google Scholar 

  209. Pietz K, Hagell P, Odin P. Subcutaneous apomorphine in late stage Parkinson’s disease: a long term follow up. J Neurol Neurosurg Psychiatry. 1998. https://doi.org/10.1136/jnnp.65.5.709.

    PubMed  PubMed Central  Google Scholar 

  210. Rosa-Grilo M, Qamar MA, Evans A, Chaudhuri KR. The efficacy of apomorphine—a non-motor perspective. Parkinsonism Relat Disord. 2016. https://doi.org/10.1016/j.parkreldis.2016.11.020.

    PubMed  Google Scholar 

  211. Barbosa P, Lees AJ, Magee C, Djamshidian A, Warner TT. A retrospective evaluation of the frequency of impulsive compulsive behaviors in Parkinson’s disease patients treated with continuous waking day apomorphine pumps. Mov Disord Clin Pract. 2017. https://doi.org/10.1002/mdc3.12416.

    PubMed  Google Scholar 

  212. Todorova A, Samuel M, Brown RG, Chaudhuri KR. Infusion therapies and development of impulse control disorders in advanced Parkinson disease: clinical experience after 3 years’ follow-up. Clin Neuropharmacol. 2015. https://doi.org/10.1097/WNF.0000000000000091.

    PubMed  Google Scholar 

  213. Borgemeester RWK, Lees AJ, van Laar T. Parkinson’s disease, visual hallucinations and apomorphine: a review of the available evidence. Parkinsonism Relat Disord. 2016. https://doi.org/10.1016/j.parkreldis.2016.04.023.

    PubMed  Google Scholar 

  214. Ellis C, et al. Use of apomorphine in Parkinsonian patients with neuropsychiatric complications to oral treatment. Parkinsonism Relat Disord. 1997. https://doi.org/10.1016/S1353-8020(97)00009-6.

    PubMed  Google Scholar 

  215. Moore TJ, Glenmullen J, Mattison DR. Reports of pathological gambling, hypersexuality, and compulsive shop** associated with dopamine receptor agonist drugs. JAMA Intern Med. 2014. https://doi.org/10.1001/jamainternmed.2014.5262.

    PubMed  PubMed Central  Google Scholar 

  216. Samuel M, et al. Impulse control disorders in Parkinson’s disease:management, controversies, and potential approaches HHS public access. Mov Disord. 2015. https://doi.org/10.1002/mds.26099.Impulse.

    PubMed  PubMed Central  Google Scholar 

  217. Giladi N, Caraco Y, Gurevich T, Djaldetti R, Adar L, Rachmilewitz Minei T, Oren S. ND0612 (levodopa/carbidopa for subcutaneous infusion) achieves stable levodopa plasma levels when administered in low and high doses in patients with PD [abstract]. Mov Disord. 2017;32(suppl:2).

  218. Giladi N, et al. Pharmacokinetic profile of ND0612 (levodopa/carbidopa for subcutaneous infusion) in Parkinson’s disease (PD) patients with motor fluctuations: results of a phase IIa dose finding study. Eur J Neurol. 2015. https://doi.org/10.1111/ene.12805.

    Google Scholar 

  219. Adar L, Minei TR, Cohen Y. Pharmacokinetic profile of continuous levodopa/carbidopa delivery when administered subcutaneously (ND0612) versus duodenal infusion (levodopa/carbidopa intestinal gel). Mov Disord. 2017. https://doi.org/10.1002/mds.27087.

    Google Scholar 

  220. Adar L, Rachmilewitz Minei T, Cohen Y, Oren S. Pharmacokinetic profile of continuous levodopa/carbidopa delivery when administered subcutaneously (ND0612) versus duodenal infusion (levodopa/carbidopa intestinal gel) [abstract]. Mov Disord. 2017;32(suppl:2).

  221. Oren S, Kieburtz K, Olanow CW, Cohen Y. A randomized controlled clinical study to evaluate the efficacy and safety of subcutaneous levodopa/carbidopa (ND0612H) in patients with advanced Parkinson’s disease. J Parkinsons Dis. 2016. https://doi.org/10.3233/JPD-169900.

    Google Scholar 

  222. Adar L, Minei TR. Identification of the optimal carbidopa concentration in subcutaneously administered ND0612. Mov Disord. 2017. https://doi.org/10.1002/mds.27087.

    Google Scholar 

  223. L. P. et al. Indigo: a multicenter, randomized, double-blind, placebocontrolled, study of continuous ND0612 infusion with adjunct oral levodopa in fluctuating Parkinson’s disease. Mov Disord. 2018. http://dx.doi.org/10.1002/mds.27434.

  224. Okun MS. Deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2012. https://doi.org/10.1056/NEJMct1208070.

    PubMed  Google Scholar 

  225. Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol. 2016. https://doi.org/10.1152/jn.00281.2015.

    PubMed  PubMed Central  Google Scholar 

  226. Eusebio A, et al. Deep brain stimulation can suppress pathological synchronisation in parkinsonian patients. J Neurol Neurosurg Psychiatry. 2011. https://doi.org/10.1136/jnnp.2010.217489.

    PubMed  Google Scholar 

  227. Okun MS, et al. Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol. 2012. https://doi.org/10.1016/S1474-4422(11)70308-8.

    PubMed  Google Scholar 

  228. Deuschl G, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2006. https://doi.org/10.1056/NEJMoa060281.

    PubMed  Google Scholar 

  229. Lachenmayer ML, et al. Stimulation of the globus pallidus internus in the treatment of Parkinson’s disease: long-term results of a monocentric cohort. Parkinsonism Relat Disord. 2019. https://doi.org/10.1016/j.parkreldis.2019.03.009.

    PubMed  Google Scholar 

  230. Limousin P, Foltynie T. Long-term outcomes of deep brain stimulation in Parkinson disease. Nat Rev Neurol. 2019. https://doi.org/10.1038/s41582-019-0145-9.

    PubMed  Google Scholar 

  231. Schuepbach WMM, et al. Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med. 2013. https://doi.org/10.1056/NEJMoa1205158.

    PubMed  Google Scholar 

  232. Obeso JA, Olanow CW, Rodriguez-Oroz MC, Krack P, Kumar R, Lang AE. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med. 2001. https://doi.org/10.1056/NEJMoa000827.

    PubMed  Google Scholar 

  233. Bronstein JM, et al. Deep brain stimulation for Parkinson disease an expert consensus and review of key issues. Arch Neurol. 2011. https://doi.org/10.1001/archneurol.2010.260.

    PubMed  Google Scholar 

  234. Anderson VC, Burchiel KJ, Hogarth P, Favre J, Hammerstad JP. Pallidal vs subthalamic nucleus deep brain stimulation in Parkinson disease. Arch Neurol. 2005. https://doi.org/10.1001/archneur.62.4.554.

    PubMed  Google Scholar 

  235. Odekerken VJJ, et al. Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013. https://doi.org/10.1016/S1474-4422(12)70264-8.

    PubMed  Google Scholar 

  236. Ramirez-Zamora A, Ostrem JL. Globus pallidus interna or subthalamic nucleus deep brain stimulation for Parkinson disease a review. JAMA Neurol. 2018. https://doi.org/10.1001/jamaneurol.2017.4321.

    PubMed  Google Scholar 

  237. Lyons KE, Wilkinson SB, Overman J, Pahwa R. Surgical and hardware complications of subthalamic stimulation: a series of 160 procedures. Neurology. 2004. https://doi.org/10.1212/01.WNL.0000134650.91974.1A.

    PubMed  Google Scholar 

  238. Oh MY, et al. Long-term hardware-related complications of deep brain stimulation. Neurosurgery. 2002. https://doi.org/10.1097/00006123-200206000-00017.

    PubMed  Google Scholar 

  239. Fenoy AJ, Simpson RK. Risks of common complications in deep brain stimulation surgery: Management and avoidance—clinical article. J Neurosurg. 2014. https://doi.org/10.3171/2013.10.JNS131225.

    PubMed  Google Scholar 

  240. Constantinescu R, et al. Key clinical milestones 15 years and onwards after DBS-STN surgery—a retrospective analysis of patients that underwent surgery between 1993 and 2001. Clin Neurol Neurosurg. 2017. https://doi.org/10.1016/j.clineuro.2017.01.010.

    PubMed  Google Scholar 

  241. Fasano A, et al. Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain. 2010. https://doi.org/10.1093/brain/awq221.

    PubMed  Google Scholar 

  242. Dayal V, Limousin P, Foltynie T. Subthalamic nucleus deep brain stimulation in Parkinson’s disease: the effect of varying stimulation parameters. J Parkinson’s Dis. 2017. https://doi.org/10.3233/JPD-171077.

    Google Scholar 

  243. Dafsari HS, et al. EuroInf 2: subthalamic stimulation, apomorphine, and levodopa infusion in Parkinson’s disease. Mov Disord. 2019. https://doi.org/10.1002/mds.27626.

    PubMed  Google Scholar 

  244. Habets JGV, Heijmans M, Kuijf ML, Janssen MLF, Temel Y, Kubben PL. An update on adaptive deep brain stimulation in Parkinson’s disease. Mov Disord. 2018. https://doi.org/10.1002/mds.115.

    PubMed  PubMed Central  Google Scholar 

  245. Contarino MF, et al. Directional steering: a novel approach to deep brain stimulation. Neurology. 2014. https://doi.org/10.1212/WNL.0000000000000823.

    PubMed  Google Scholar 

  246. Seppi K, et al. Update on treatments for nonmotor symptoms of Parkinson’s disease—an evidence-based medicine review. Mov Disord. 2019. https://doi.org/10.1002/mds.27602.

    PubMed  PubMed Central  Google Scholar 

  247. Schrag A, Sauerbier A, Chaudhuri KR. New clinical trials for nonmotor manifestations of Parkinson’s disease. Mov Disord. 2015. https://doi.org/10.1002/mds.26415.

    PubMed  Google Scholar 

  248. Zesiewicz TA, et al. Practice parameter: Treatment of nonmotor symptoms of Parkinson disease: report of the quality standards subcommittee of the American academy of neurology. Neurology. 2010. https://doi.org/10.1212/WNL.0b013e3181d55f24.

    PubMed  Google Scholar 

  249. Evans AH, Farrell MJ, Gibson SJ, Helme RD, Lim SY. Dyskinetic patients show rebound worsening of affect after an acute L-dopa challenge. Parkinsonism Relat Disord. 2012. https://doi.org/10.1016/j.parkreldis.2012.01.020.

    PubMed  Google Scholar 

  250. Antonini A, et al. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): Relevance for motor and non-motor features. Neuropsychiatr Dis Treat. 2008. https://doi.org/10.2147/ndt.s2404.

    PubMed  PubMed Central  Google Scholar 

  251. Ebersbach G, Hahn K, Lorrain M, Storch A. Tolcapone improves sleep in patients with advanced Parkinson’s disease (PD). Arch Gerontol Geriatr. 2010. https://doi.org/10.1016/j.archger.2010.03.008.

    PubMed  Google Scholar 

  252. Muller T. Tolcapone addition improves Parkinson’s disease associated nonmotor symptoms. Ther Adv Neurol Disord. 2014. https://doi.org/10.1177/1756285613512392.

    PubMed  PubMed Central  Google Scholar 

  253. Wolz M, Hauschild J, Koy J, Fauser M, Klingelhöfer L, Schackert G, Reichmann H, Storch A. Immediate effects of deep brain stimulation of the subthalamic nucleus on nonmotor symptoms in Parkinson's disease. Parkinsonism Relat Disord. 2012;18(8):994–7.

    PubMed  Google Scholar 

  254. Witjas T, et al. Effects of chronic subthalamic stimulation on nonmotor fluctuations in Parkinson’s disease. Mov Disord. 2007. https://doi.org/10.1002/mds.21602.

    PubMed  Google Scholar 

  255. Odin P, et al. Collective physician perspectives on non-oral medication approaches for the management of clinically relevant unresolved issues in Parkinson’s disease: consensus from an international survey and discussion program. Parkinsonism Relat Disord. 2015. https://doi.org/10.1016/j.parkreldis.2015.07.020.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foltynie.

Ethics declarations

Funding

NV’s research time and position is funded by the Janet Owens charitable foundation. No funding was received specifically for this review.

Conflict of interest

NV has received educational support from Abbvie, Stada, Ipsen and Merc, speaker’s honorarium from Abbvie & Stada and served on advisory boards for Abbvie & Britannia Pharmaceuticals. TF has received grant support form Cure Parkinson’s trust, Michael J Fox Foundation, John Black Charitable Foundation, Van Andel Institute, Defeat MSA, Innovate UK, National Institute for Health Research. He has received honoraria for speaking at meetings sponsored by Bial, Profile Pharma, Britannia and Boston Scientific. He has served on advisory boards for Living Cell Technologies, Voyager Therapeutics and Oxford Biomedica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijiaratnam, N., Foltynie, T. Therapeutic Strategies to Treat or Prevent Off Episodes in Adults with Parkinson’s Disease. Drugs 80, 775–796 (2020). https://doi.org/10.1007/s40265-020-01310-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-020-01310-2

Navigation