Log in

Improved Long-Term Stability of Low-Temperature Polysilicon Thin-Film Transistors by Using a Tandem Gate Insulator with an Atomic Layer of Deposited Silicon Dioxide

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, we report a substantial improvement in the long-term stability of low-temperature polycrystalline silicon (LTPS) thin-film transistors (TFTs) with a tandem gate insulator composed of silicon dioxide (SiO2) deposited by using atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD). Negative-bias temperature instability (NBTI) tests showed that threshold-voltage (ΔVth) shifts were significantly smaller than when only a plasma-enhanced chemical vapor deposition (PECVD) structure was used. We believe that the unique stoichiometric characteristics and the reduction in the interfacial trap density (Dit) produced by the SiO2 gate insulator that had been fabricated using ALD enhanced the long-term stability of the LTPS TFTs. These results suggest a tandem structure gate insulator with high-quality ALD-based SiO2 thin film can provide an important improvement in the characteristics of the p-channel LTPS TFTs required for advanced active matrix organic light-emitting diodes (AMOLEDs) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Serikawa and F. Omata, IEEE Trans. Electron Devices 49, 820 (2002).

    Article  ADS  Google Scholar 

  2. T. Serikawa, S. Shirai, A. Okamoto and S. Suyama, IEEE Trans. Electron Devices 36, 1929 (1989).

    Article  ADS  Google Scholar 

  3. I-W. Wu et al., IEEE Electron Device Lett. 11, 166 (1990).

    ADS  Google Scholar 

  4. T. Ohmi, K. Kotani, A. Teramoto and M. Miyashita, IEEE Electron Device Lett. 12, 652 (1991).

    Article  ADS  Google Scholar 

  5. M. Miyasaka and J. Stoemenos, J. Appl. Phys. 86, 5556 (1999).

    Article  ADS  Google Scholar 

  6. C. T. Angelis et al., J. Appl. Phys. 86, 4600 (1999).

    Article  ADS  Google Scholar 

  7. M. Makabe, T. Kubota and T. Kitano, IEEE 38th Ann. Int. Reliability Phys. Symp. (San Jose, California, 2000), p. 205.

  8. S. Dimittrijev and N. Stojadinovi, Solid-State Electron. 30, 1001 (1987).

    Article  ADS  Google Scholar 

  9. C. Y. Huang et al., Jpn. Soc. Appl. Phys. 39, 5763 (2000).

    Article  ADS  Google Scholar 

  10. M. J. Powell, C. van Berkel and J. R. Hughes, Appl. Phys. Lett. 54, 1323 (1989).

    Article  ADS  Google Scholar 

  11. T-J. King, M. G. Hack and I-W. Wu, J. Appl. Phys. 75, 908 (1994).

    Article  ADS  Google Scholar 

  12. C. A. Dimitriadis et al., IEEE Trans. Electron Devices 39, 598 (1992).

    Article  ADS  Google Scholar 

  13. L. M. Terman, Solid-state Electron. 5, 284 (1962).

    Article  ADS  Google Scholar 

  14. A. Koukab, A. Bath and E. Losson, Solid-State Electron. 41, 63 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **-Seong Park or Yongtaek Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Park, JS. & Hong, Y. Improved Long-Term Stability of Low-Temperature Polysilicon Thin-Film Transistors by Using a Tandem Gate Insulator with an Atomic Layer of Deposited Silicon Dioxide. J. Korean Phys. Soc. 77, 277–281 (2020). https://doi.org/10.3938/jkps.77.277

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.277

Keywords

Navigation