Log in

Investigation of the Ionic Conductivities of Yttria-Doped Ceria and Yttria-Stabilized Zirconia by Using the Statistical Moment Method

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The ionic conductivities of yttria-doped ceria (YDC) and yttria-stabilized zirconia (YSZ), are investigatied using statistical moment method including the anharmonicity effects of thermal lattice vibrations. The expressions for the lattice constant and the vacancy activation energy are derived in closed analytic forms in terms of the power moments of the atomic displacements. The distribution of oxygen vacancies around dopants and the important role of cation barriers on vacancy diffusion are evaluated in detail. The lattice constants, activation energies, ionic conductivities of YDC and YSZ are calculated as functions of the dopant concentration. Notably, the ionic conductivities depend linearly on dopant concentration. Our results are in good agreement with those of both previous experiments and several theoretical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Saporiti, R. E. Juarez, F. Audebert and M. Boudard, Mater. Res. 16, 655 (2013).

    Article  Google Scholar 

  2. A. J. Jacobson, Chem. Mater. 22, 660 (2010).

    Article  Google Scholar 

  3. M. Irshad, K. Siraj, R. Raza and A. Ali, Appl. Sci. 6, 75 (2016).

    Article  Google Scholar 

  4. G. Laukaitis, J. Dudonis and D. Milcius, Mater. Sci. 13, 23 (2007).

    Google Scholar 

  5. P-L. Chen and I-W. Chen, J. Am. Cream. Soc. 77, 2289 (1994).

    Article  Google Scholar 

  6. K. Muthukkumaran, R. Bokalawela, T. Mathews and S. Selladurai, J. Mater. Sci. 42, 7461 (2007).

    Article  ADS  Google Scholar 

  7. P. Li, I-W. Chen, J. E. Penner-Hahn and T-Y. Tien, J. Am. Ceram. Soc. 74, 958 (1991).

    Article  Google Scholar 

  8. V. G. Zavodinsky, Phys. Solid State 46, 453 (2004).

    Article  ADS  Google Scholar 

  9. M-Y. Cheng, D-H. Hwang, H-S. Sheu and B-J. Hwang, J. Power Sources 175, 137 (2008).

    Article  ADS  Google Scholar 

  10. O. P. Shing, T. Y. **, T-Y. Y. Hin and Z. Zainal, J. Appl. Sci. 11, 1285 (2011).

    Article  ADS  Google Scholar 

  11. H. Inaba and H. Tagawa, Solid State Ionics 83, 1 (1996).

    Article  Google Scholar 

  12. M. Burbano et al., Chem. Mater. 24, 222 (2012).

    Article  Google Scholar 

  13. D. R. Ou, T. Mori, F. Ye and T. Kobayashi, Appl. Phys. Lett. 89, 171911 (2006).

    Article  ADS  Google Scholar 

  14. H. Yoshida et al., Solid State Ionics 160, 109 (2003).

    Article  Google Scholar 

  15. R. Devanathan, W. J. Weber, S. C. Singhal and J. D. Gale, Solid State Ionics 177, 1251 (2006).

    Article  Google Scholar 

  16. F. Shimojo et al., J. Phys. Soc. Jpn 61, 2848 (1992).

    Article  ADS  Google Scholar 

  17. M. Meyer, N. Nicoloso and V. Jaenisch, Phys. Rev. B 56, 5961 (1997).

    Article  ADS  Google Scholar 

  18. J. P. Goff et al., Phys. Rev. B 59, 14202 (1999).

    Article  ADS  Google Scholar 

  19. F. Pietrucci, M. Bernasconi, A. Laio and M. Parrinello, Phys. Rev. B 78, 094301 (2008).

    Article  ADS  Google Scholar 

  20. V. V. Hung and B. D. Tinh, Mod. Phys. Lett. B 25, 1101 (2011).

    Article  ADS  Google Scholar 

  21. V. V. Hung, J. Lee and K. Masuda-**do, J. Phys. Chem. Solids 67, 682 (2006).

    Article  ADS  Google Scholar 

  22. K. Masuda-**do, V. V. Hung and P.E.A Turchi, Solid State Phenom. 138, 209 (2008).

    Article  Google Scholar 

  23. V. V. Hung, L. T. M. Thanh and K. Masuda-**do, Comput. Mater. Sci. 49, S355 (2010).

    Article  Google Scholar 

  24. V. V. Hung, L. T. M. Thanh, N.T. Hai, Adv. Nat. Sci. 7, 21 (2006).

    Google Scholar 

  25. N. Tang and V. V. Hung, Phys. Status Solid B 149, 511 (1988).

    Article  ADS  Google Scholar 

  26. M. Nakayama and M. Martin, Phys. Chem. Chem. Phys. 11, 3241 (2009).

    Article  Google Scholar 

  27. M. S. Khan, M. S. Islam and D. R. Bates, J. Mater. Chem. 8, 2299 (1998).

    Article  Google Scholar 

  28. R. Pornprasertsuk, P. Ramanarayanan, C. B. Musgrave and F. B. Prinz, J. Appl. Phys. 98, 103513 (2005).

    Article  ADS  Google Scholar 

  29. A. Kushima and B. Yildiz, J. Mater. Chem. 20, 4809 (2010).

    Article  Google Scholar 

  30. H. W. Brinkman, W. J. Briels and H. Verweij, Chem. Phys. Lett. 247, 386 (1995).

    Article  ADS  Google Scholar 

  31. M. Kilo, C. Argirusis, G. Borchardt and R. A. Jackson, Phys. Chem. Chem. Phys. 5, 2219 (2003).

    Article  Google Scholar 

  32. W. Chen, T. A. Lee and A. Navrotsky, J. Mater. Res. 20, 144 (2005).

    Article  ADS  Google Scholar 

  33. A. Bogicevic and C. Wolverton, Europhys. Lett. 56, 393 (2001).

    Article  ADS  Google Scholar 

  34. Z-P. Li, T. Mori, J. Zou and J. Drennan, Mater. Res. Bull. 48, 807 (2013).

    Article  Google Scholar 

  35. T. Arima, K. Fukuyo, K. Idemitsu and Y. Inagaki, J. Mol. Liquids 113, 67 (2004).

    Article  Google Scholar 

  36. V. V. Sizov, M. J. Lampinen and A. Laaksonen, Solid State Ionics 266, 29 (2014).

    Article  Google Scholar 

  37. C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006).

    Article  ADS  Google Scholar 

  38. P. Demontis, S. Spanu and G. B. Suffritti, J. Chem. Phys. 114, 7980 (2001).

    Article  ADS  Google Scholar 

  39. Z-P. Li et al., J. Phys. Chem. C 116, 5435 (2012).

    Article  Google Scholar 

  40. P. K. Schelling and S. R. Phillpot, J. Am. Ceram. Soc. 84, 2997 (2001).

    Article  Google Scholar 

  41. R. Krishnamurthy, Y-G. Yoon, D. J. Srolovitz and R. Car, J. Am. Ceram. Soc. 87, 1821 (2004).

    Article  Google Scholar 

  42. D. Marrocchelli, S. R. Bishop, H. L. Tuller and B. Yildiz, Adv. Funct. Mater. 22, 1958 (2012).

    Article  Google Scholar 

  43. T. S. Zhang et al., Solid State Sciences 5, 1505 (2003).

    Article  ADS  Google Scholar 

  44. N. Kim and J. F. Stebbins, Chem. Mater. 19, 5742 (2007).

    Article  Google Scholar 

  45. R. P. Ingle and D. Lewis III, J. Am. Cerarn. Soc. 69, 325 (1986).

    Article  Google Scholar 

  46. S. P. Terblanche, J. Appl. Cryst. 22, 283 (1989).

    Article  Google Scholar 

  47. T. R. Welberry, B. D. Butler, J. G. Thompson and R. L. Withers, J. State Chem. 106, 461 (1993).

    Article  ADS  Google Scholar 

  48. C. R. A. Catlow, A. V. Chadwick, G. N. Greaves and L. M. Moroney, J. Am. Ceram. Soc. 69, 272 (1986).

    Article  Google Scholar 

  49. K. Kawata, H. Maekawa, T. Nemoto and T. Yamamura, Solid State Ionics 177, 1687 (2006).

    Article  Google Scholar 

  50. A. Bogicevic and C. Wolverton, Phys. Rev B 67, 024106 (2003).

    Article  ADS  Google Scholar 

  51. S. Grieshammer, B. O. H. Grope, J. Koettgen and M. Martin, Phys. Chem. Chem. Phys. 16, 9974 (2014).

    Article  Google Scholar 

  52. D. R. Ou et al., Acta Mater. 54, 3737 (2006).

    Article  Google Scholar 

  53. J. V. Herle et al., J. Eur. Ceram. Soc. 16, 961 (1996).

    Article  Google Scholar 

  54. W. Zajac and J. Molenda, Solid State Ionics 179, 154 (2008).

    Article  Google Scholar 

  55. S. P. S. Badwal, State Ionics 52, 32 (1992).

    Article  Google Scholar 

  56. M. Filal et al., Solid State Ionics 80, 27 (1995).

    Article  Google Scholar 

  57. C. Zhang et al., Mater. Sci. Eng. B 137, 24 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui Duc Tinh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, L.T., Hung, V.V. & Tinh, B.D. Investigation of the Ionic Conductivities of Yttria-Doped Ceria and Yttria-Stabilized Zirconia by Using the Statistical Moment Method. J. Korean Phys. Soc. 75, 293–303 (2019). https://doi.org/10.3938/jkps.75.293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.75.293

Keywords

Navigation