Log in

Patterns of Gravitational Cooling in Schrödinger Newton System

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We study time evolution of Schrödinger-Newton system using the self-consistent Crank-Nicolson method to understand the dynamical characteristics of nonlinear systems. Compactifying the radial coordinate by a new one, which brings the spatial infinity to a finite value, we are able to impose the boundary condition at infinity allowing for a numerically exact treatment of the Schrödinger-Newton equation. We study patterns of gravitational cooling starting from exponentially localized initial states. When the gravitational attraction is strong enough, we find that a small-sized oscillatory solitonic core is forming quickly, which is surrounded by a growing number of temporary halo states. In addition a significant fraction of particles escape to asymptotic regions. The system eventually settles down to a stable solitonic core state while all the excess kinetic energy is carried away by the esca** particles, which is a phenomenon of gravitational cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Disi, Phys. Lett. A 105, 199 (1984).

    Article  ADS  Google Scholar 

  2. I. M. Moroz, R. Penrose and P. Tod, Class. Quant. Grav. 15, 2733 (1998).

    Article  ADS  Google Scholar 

  3. M. Bahrami, A. Großardt, S. Donadi and A. Bassi, New J. Phys. 16, 115007 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  4. J. R. van Meter, Class. Quant. Grav. 28, 215013 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  5. L. Hui, J. P. Ostriker, S. Tremaine and E. Witten, Phys. Rev. D 95, 043541 (2017).

    Article  ADS  Google Scholar 

  6. J. W. Lee, EPJ Web Conf. 168, 06005 (2018).

    Article  Google Scholar 

  7. H. Y. Schive, T. Chiueh and T. Broadhurst, Nature Phys. 10, 496 (2014).

    Article  ADS  Google Scholar 

  8. P. Salzman, Investigation of the Time Dependent Schrödinger-Newton Equation, Ph.D. thesis, Univ. of California at Davis, 2005.

    Google Scholar 

  9. D. Bak, M. Gutperle and R. A. Janik, J. High Energy Phys. 1110, 056 (2011); D. Bak et al., Phys. Lett. B 767, 341 (2017).

    Article  ADS  Google Scholar 

  10. F. S. Guzman and L. A. Urena-Lopez, Phys. Rev. D 69, 124033 (2004).

    Article  ADS  Google Scholar 

  11. F. S. Guzman and L. A. Urena-Lopez, Astrophys. J. 645, 814 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongsu Bak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bak, D., Kim, S., Min, H. et al. Patterns of Gravitational Cooling in Schrödinger Newton System. J. Korean Phys. Soc. 74, 756–763 (2019). https://doi.org/10.3938/jkps.74.756

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.756

Keywords

Navigation