Log in

Motional Stark effect diagnostics for KSTAR

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The motional Stark effect (MSE) diagnostic is used to measure the radial magnetic pitch-angle profile in neutral-beam-heated plasmas. The diagnostic relies upon the measurement of the polarization direction of Stark-split D-alpha emission from injected fast neutral atoms in a magnetic field. Measurements of the magnetic pitch angle are used with magnetic equilibrium reconstruction codes such as EFIT to calculate the safety factor in shaped plasmas. The MSE diagnostic is important for determining the shape of the q profile to optimize confinement and stability, and it has become a key element in high-performance tokamaks. For the purpose of achieving the high-performance operating region in the Korea Superconducting Tokamak Advanced Research KSTAR device, two types of methods are being studied. In KSTAR, a multichord PEM (photo-elastic modulator)-based MSE system is being developed, and an imaging MSE polarimetry system using the coherence imaging technique has been showing promising initial results during the last two KSTAR experimental campaigns in 2012 and 2013, respectively. In this paper, we describe the progress of the KSTAR MSE diagnostics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Howard, Plasma Phys. Control. Fusion 50, 125003 (2008).

    Article  ADS  Google Scholar 

  2. J. Howard and **il Chung, Rev. Sci. Instrum. 83, 10D510 (2012).

    Article  Google Scholar 

  3. A. Thorman, C. Michael, J. Howard, Rev. Sci. Instrum. 6, 063507 (2013).

    Article  ADS  Google Scholar 

  4. B. W. Rice, D. G. Nilson and D. Wróblewski, Rev. Sci. Instrum. 66, 373 (1995).

    Article  ADS  Google Scholar 

  5. S. H. Jeong et al., Rev. Sci. Instrum. 83, 02B102 (2012).

    Google Scholar 

  6. J. Howard, A. Diallo, R. Jaspers and J. Chung, J. Plasma Fusion Res. 5, S1010-1 (2010).

    Article  Google Scholar 

  7. N. C. Hawkes, K. Blackler, B. Viaccoz, C. H. Wilson, J. B. Migozzi and B. C. Stratton, Rev. Sci. Instrum. 70, 894 (1999).

    Article  ADS  Google Scholar 

  8. B. W. Rice, K. H. Burrell and L. L. Lao, Nuclear Fusion 37, 517 (1997).

    Article  ADS  Google Scholar 

  9. T. Fujita, H. Kuko, T. Sugie, N. Isei and K. Ushigusa, Fusion Engin. Design 34–35, 289 (1997).

    Article  Google Scholar 

  10. N. J. Conway et al., Rev. Sci. Instrum. 81, 10D738 (2010).

    Article  Google Scholar 

  11. D. Moreau et al., Nucl. Fusion 43, 870 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  12. Technical report, Ralph T. Huijgen, The Eindhoven University of Technology (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, J., Ko, J., Howard, J. et al. Motional Stark effect diagnostics for KSTAR. Journal of the Korean Physical Society 65, 1257–1260 (2014). https://doi.org/10.3938/jkps.65.1257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1257

Keywords

Navigation