Log in

Radiation detectors based on PbSnTe:In films, sensitive in the terahertz range of the spectrum

  • Optical Information Technologies
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

This paper presents a review of studies of the photoelectric properties of PbSnTe:In films obtained by molecular beam epitaxy and photosensitive structures in the far infrared and submillimeter ranges based on these films. The parameters of photodetector arrays of this type and detectors based on doped semiconductors and superconductors are compared. One-dimensional (2×128 elements) and two-dimensional (128 × 128 elements) PbSnTe:In based arrays with a sensitivity threshold of ~22 μm and an operating temperature of T ≤ 16 K are implemented. Under background-free conditions, the noise equivalent power (NEP) was NEP ≤ 10−18 W/Hz0.5 at T = 7 K for a black body radiation source at TBB = 77 K. In the submillimeter range of the spectrum, sensitivity to laser radiation with a wavelength λ ≤ 205 μm and a value NEP ≤ 10−12 W/Hz0.5 was observed without optimization of the design of the photosensitive element and minimization of the measurement circuit noise. The directions of the development of PbSnTe:In based radiation detectors are considered..

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Anderson, “Gain-Frequency-Current Relation for Pb1−x SnxTe Double Heterostructure Lasers,” IEEE J. Quant. Electron. 13 (7), 532–543 (1977).

    Article  ADS  Google Scholar 

  2. M. R. Jonson, R. A. Chapman, and J. S. Wrobel, “Detectivity Limits for Diffused Junction PbSnTe Detectors,” Infrared Phys. 15 (4), 317–329 (1975).

    Article  ADS  Google Scholar 

  3. A. G. Thompson and J. W. Wagner, “Growth and Characterization of Lead-Tin Telluride Epitaxial Layers,” Phys. Status Solidi. 5 (2), 439–448 (1971).

    Article  ADS  Google Scholar 

  4. A. Bradford and E. Wentworth, “Preparation of Vapor Growth Lead-Tean Telluride for 8–14 Micrometer Photodiodes,” Infrared Phys. 15 (4), 303–309 (1975).

    Article  ADS  Google Scholar 

  5. C. C. Wang and M. E. Kim, “Long-Wavelength PbSnTe/PbTe Heterostructure Mosaics,” J. Appl. Phys. 50 (5), 3733–3737 (1979).

    Article  ADS  Google Scholar 

  6. B. A. Akimov, B. A. Brandt, S. A. Bogoslovskii, et al., “Nonequilibrium Metallic State in Pb1−x SnxTe(In) Alloys,” Pisma Zh. Eksp. Teoret. Fiz. 29 (1), 11–14 (1979).

    Google Scholar 

  7. B. M. Vul, I. D. Voronova, G. A. Kalyuzhnaya, et al., “Transfer Phenomena in Pb0,78Sn0,22Te with High Indium Content, Pisma Zh. Eksp. Teoret. Fiz. 29 (1), 21–25 (1979).

    Google Scholar 

  8. M. A. Lampert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).

    Google Scholar 

  9. A. E. Klimov and V. N. Shumsky, “Shallow Traps and the Space-Charged-Induced Limitation of the Injection Current in PbSnTe: In Narrow-Gap Ferroelectric,” Physica B. 404 (23–24), 5028–5031 (2009).

    Article  ADS  Google Scholar 

  10. K. G. Kristovskii, A. E. Kozhanov, D. E. Dolzhenko, et al., “Photoconduction of Doped Alloys on the Basis of Lead Telluride in the Submillimeter Range,” Fiz. Tverd. Tela 46 (1), 123–125 (2004).

    Google Scholar 

  11. A. N. Akimov, V. G. Erkov, V. V. Kubarev, et al., “Photosensitivity of Pb1−x SnxTehIni Films in the Terahertz Wavelength Range,” Fiz. Tekhn. Poluprovod. 40 (2), 169–173 (2006).

    Google Scholar 

  12. D. Khokhlov, L. Ryabova, and A. Nicoric, et al., “Terahertz Photoconductivity of Pb1−x SnxTe (In),” Appl. Phys. Lett. 93, 264103 (2008).

    Article  ADS  Google Scholar 

  13. L. I. Ryabova, A. V. Nicorici, S. N. Danilov, and D. R. Khokhlov, “Influence of Electric Current and Magnetic Field on Terahertz Photoconductivity in Pb1−x SnxTe(In),” Pisma Zh. Eksp. Teoret. Fiz. 97 (9), 607–610 (2013) [JETP Letters 97 (9), 525–527 (2013)].

    Google Scholar 

  14. A. E. Klimov and V. N. Shumsky “Far-Infrared Multielement Photoreceivers Based on In-Doped PbSnTe Heteroepitaxial Films on BaF2,” in Matrix Infrared Photodetectors (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  15. D. G. Esaev and S. P. Sinitsa “Photodetectors with Blocked Hop** Conductivity // in Matrix Infrared Photodetectors. Ed. S. P. Sinitsa (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  16. D. V. Ischenko, A. E. Klimov, I. G. Neizvestny, et al., “Temperature Resolution of Pb1−x SnxTe:In-Based Photosensing Film Structures Under Illumination with Blackbody Radiation,” in Proc. of the 15th Intern. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) (IEEE, Novosibirsk, 2014).

    Google Scholar 

  17. A. E. Klimov, V. V. Kubarev, N. S. Paschin, and V. N. Shumsky, “Photocurrent Dynamics in PbSnTe: In Films in the Submillimeter Spectral Range,” in Proc. of the Intern. Symp. Terahertz Radiation: Generation and Application (Novosibirsk, 2010).

    Google Scholar 

  18. A. N. Akimov, D. V. Ishchenko, A. E. Klimov, et al. “Terahertz Detectors Based on Pb1−x SnxTe: In Films,” Avtometriya 49 (5), 86–92 (2013) [Optoelectron., Instrum. Data Process. 49 (5), 492–497 (2013)].

    Google Scholar 

  19. R. R. Akberdin, E. N. Chesnokov, M. A. Dem’yanenko, et al., “High Power THz Applications on the NovoFEL,” in Proc. of the 34th Intern. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) (Busan, Korea, 2009).

    Google Scholar 

  20. A. N. Akimov, V. G. Erkov, A. E. Klimov, et al., “Injection Currents in the Pb1−x SnxTehIni Narrow-Band Dielectric,” Fiz. Tekhm. Poluprovod. 39 (5), 563–568 (2005).

    Google Scholar 

  21. A. N. Akimov, A. E. Klimov, V. N. Shumsky, and A. L. Aseev, “Submillimeter Matrix Photosensitive Device on PbSnTe: In Films,” Avtometriya 43 (4), 63–73 (2007) [Optoelectron., Instrum. Data Process. 43 (4), 342–350 (2007)].

    Google Scholar 

  22. A. E. Klimov and V. N. Shumsky, Method of Radiation Detection by a Photodetector Array, RF Patent 2399990. Publ. 20.09.2010, Bull. No. 26.

  23. A. Rogalski, “Infrared Detectors for the Future,” Acta Phys. Pol. A. 116 (3), 389–406 (2009).

    Article  ADS  Google Scholar 

  24. A. E. Klimov, V. V. Kubarev, and V. N. Shumsky, “Terahertz Imaging Using Intermediate Thermal Screen,” in Proc. of the 35th Intern. Conf. on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (Rome, Italy, 2010).

    Google Scholar 

  25. I. G. Neizvestnyi, A. E. Klimov, and V. N. Shumsky, “Photon Far-Infrared and Submillimeter Array Detectors,” Usp. Fiz. Nauk 185 (10), 1031–1042 (2015).

    Article  Google Scholar 

  26. N. Sclar, “Properties of Doped Silicon and Germanium Infrared Detectors,” Progr. Quantum Electron. 9 (3), 149–257 (1984).

    Article  ADS  Google Scholar 

  27. J. Leotin, “Far Infrared Photoconductive Detectors,” Proc. SPIE. 0666, 81–100 (1986).

    Article  ADS  Google Scholar 

  28. A. Rogalski and F. Sizov, “Terahertz Detectors and Focal Plane Arrays,” Opto-Electron. Rev. 19 (3), 346–404 (2011).

    Article  ADS  Google Scholar 

  29. B. S. Karasik, S. V. Pereverzev, A. Soibel, et al., “Energy-Resolved Detection of Single Infrared Photons with λ= 8 μm Using a Superconducting Microbolometer,” Appl. Phys. Lett. 101, 052601 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Klimov.

Additional information

Original Russian Text © I.G. Neizvestnyi, A.E. Klimov, V.V. Kubarev, V.N. Shumskii, 2016, published in Avtometriya, 2016, Vol. 52, No. 5, pp. 71–83.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neizvestnyi, I.G., Klimov, A.E., Kubarev, V.V. et al. Radiation detectors based on PbSnTe:In films, sensitive in the terahertz range of the spectrum. Optoelectron.Instrument.Proc. 52, 462–474 (2016). https://doi.org/10.3103/S8756699016050083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699016050083

Keywords

Navigation