Log in

Noise-Source Detection in an Oceanic Waveguide Using Interferometric Processing

  • UNDERWATER ACOUSTICS
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

The signal-to-noise ratio as a result of interferometric processing of noise-source field in an oceanic waveguide is estimated. The minimum duration of noise-source realization, which determines the maximum noise immunity, is evaluated. The noise-source signal detection based on the Neyman–Pearson criterion is considered. The range of input signal-to-noise ratios for the case where a single detector provides acceptable data on the source parameters is analyzed. An expression for the detection curves (dependences of the correct-detection probability on the signal-to-noise ratio at a fixed false-alarm probability) is derived. The corresponding numerical calculations are carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. D. Chuprov, “Interference structure of sound in a layered ocean,” in Ocean Acoustics. Current State (Nauka, Moscow, 1982), pp. 71–91 [in Russian].

    Google Scholar 

  2. E. F. Orlov, “Interference structure of broadband sound in ocean,” in Problems in Ocean Acoustics (Nauka, Moscow, 1984), pp. 85–92 [in Russian].

    Google Scholar 

  3. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Spectrogram and localization of a sound source in shallow water,” Acoust. Phys.63 (4), 449 (2017).

    Article  ADS  Google Scholar 

  4. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, and I. V. Kaznachheev, “Noise source localization shallow water,” Phys. Wave Phenom.25 (2), 156–163 (2017). https://doi.org/10.3103/S1541308X17020145

    Article  ADS  Google Scholar 

  5. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, I. V. Kaznacheev, and V. A. Grigor’ev, “Interferometric method for estimating the velocity of a noise sound source and the distance to it in shallow water using a vector-scalar receiver,” Phys. Wave Phenom.25 (4), 299–306 (2017). https://doi.org/10.3103/S1541308X17040100

    Article  ADS  Google Scholar 

  6. I. V. Kaznacheev, G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “An interferometric method for detecting a moving sound source with a vector-scalar receiver,” Acoust. Phys.64 (1), 37 (2018).

    Article  ADS  Google Scholar 

  7. V. M. Kuz’kin, S. A. Pereselkov, G. N. Kuznetsov, and I. V. Kaznacheev, “Interferometric direction finding by a vector-scalar receiver,” Phys. Wave Phenom.26 (1), 63–73 (2018). https://doi.org/10.3103/S1541308X18010090

    Article  ADS  Google Scholar 

  8. V. M. Kuz’kin, G. N. Kuznetsov, S. A. Pereselkov, and V. A. Grigor’ev, “Resolving power of the interferometric method of source localization,” Phys. Wave Phenom.26 (2), 150–159 (2018). https://doi.org/10.3103/S1541308X18020097

    Article  ADS  Google Scholar 

  9. E. S. Kaznacheeva, G. N. Kuznetsov, V. M. Kuz’kin, G. A. Lyakhov, and S. A. Pereselkov, “Measurement capability of the interferometric method of sound source localization in the absence of data on the waveguide transfer function,” Phys. Wave Phenom.27 (1), 73–78 (2019). https://doi.org/10.3103/S1541308X19010126

    Article  ADS  Google Scholar 

  10. G. N. Kuznetsov, V. M. Kuz’kin, G. A. Lyakhov, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Direction finding of a noise sound source,” Phys. Wave Phenom.27 (3), 237–241 (2019). https://doi.org/10.3103/S1541308X19030117

    Article  ADS  Google Scholar 

  11. T. N. Besedina, G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Determining the depth of a sound source in shallow water against intense back ground noise,” Acoust. Phys.61 (6), 681 (2015).

    Article  ADS  Google Scholar 

  12. T. N. Besedina, G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Estimation of the depth of a stationary sound source in shallow water,” Phys. Wave Phenom.23 (4), 292–303 (2015). https://doi.org/10.3103/S1541308X1504007X

    Article  ADS  Google Scholar 

  13. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Wave method for estimating the sound source depth in an oceanic waveguide,” Phys. Wave Phenom.24 (4), 310–316 (2016). https://doi.org/10.3103/S1541308X16040129

    Article  ADS  Google Scholar 

  14. J. P. Ianniello, “Recent developments is sonar signal processing,” IEEE Signal Proc. Mag.15 (4), 27 (1998).

    Google Scholar 

  15. G. S. Malyshkin and G. B. Sidel’nikov, “Optimal and adaptive methods of processing hydroacoustic signals (review),” Acoust. Phys.60 (5), 570 (2014).

    Article  ADS  Google Scholar 

  16. A. G. Sazontov and A. I. Malekhanov, “Matched field signal processing in underwater sound channels (review),” Acoust. Phys.61 (2), 213 (2015).

    Article  ADS  Google Scholar 

  17. V. I. Tikhonov, Optimal Signal Reception (Radio i Svyaz’, Moscow, 1983) [in Russian].

  18. V. I. Tikhonov, Statistical RadioEngineering (Radio i Svyaz’, Moscow, 1982) [in Russian].

  19. L. M. Brekhovskikh and Yu. P. Lysanov, Fundamentals of Ocean Acoustics (Springer Verlag, Berlin, 1982).

    Book  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project nos. 19-08-00941, 19-29-06075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuz’kin.

Additional information

Translated by Yu. Sin’kov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’kin, V.M., Lyakhov, G.A., Pereselkov, S.A. et al. Noise-Source Detection in an Oceanic Waveguide Using Interferometric Processing. Phys. Wave Phen. 28, 68–74 (2020). https://doi.org/10.3103/S1541308X20010057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X20010057

Navigation