Log in

Carbonization and Coke Characteristics of Ogboligbo Coal

  • COAL
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The comprehensive fuel characterization of newly discovered coals is critical to efficient energy recovery and effective utilization in various applications. Over the years, numerous coal deposits have been discovered in Nigeria, which has reignited interest in coal utilization. However, lack of comprehensive data on the new coals and their coking potential has hampered progress in the coal, iron, and steel industries in Nigeria. Therefore, this study examined the coke and energy recovery potential of a newly discovered lignite coal from Ogboligbo (OGB) in Kogi state of Nigeria through carbonization in a muffle furnace reactor. The pH, FTIR and TGA analyses of OGB and the derived cokes were subsequently examined in detail. The results demonstrated that temperature significantly influenced the carbonization process resulting in a coke yield, energy yield, higher heating value, and thermal properties markedly different from OGB. The pH analysis revealed weakly to strongly acidic cokes indicating their limited application to energy, steel, and iron manufacturing. The FTIR analysis showed that OGB and cokes structures consist of clay and silicate minerals such as kaolinite and illite. Lastly, the results showed that the carbonization process adversely affected the thermochemical reactivity of the cokes due to low moisture and volatile matter. However, the risks of self-ignition or spontaneous combustion are minimised after carbonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. BP Statistical Review of World Energy 2017, London: British Petroleum, 2018, no. 66.

  2. The future of coal: An interdisciplinary MIT study, Massachusetts Institute of Technology, 2007. https://web.mit.edu/coal/The_Future_of_Coal.pdf. Accessed October 6, 2018.

  3. Rowland, J., World Coal, 2014, vol. 11, no. 1, pp. 12–17.

    Google Scholar 

  4. Key World Energy Statistics, Paris: Int. Energy Agency, 2007.

  5. Kleiner, K., Nat. Rep. Clim. Change, 2008, vol. 2, no. 2, pp. 28–30.

    Google Scholar 

  6. Burnard, K. and Ito, O., in Proc. IEA Clean Coal Centre Workshop on Advanced Ultrasupercritical Coal-Fired Power Plants, Vienna, Paris: Int. Energy Agency, 2012.

  7. Barnes, I., Cornerstone, 2015, vol. 1, no. 3, pp. 4–9.

    Google Scholar 

  8. Benton, D., Coal to continue to be leading power generator to develo** countries, Min. Global Mag., 2018. https://bit.ly/2yiLOJL. Accessed October 6, 2018.

  9. Forsythe, M., China cancels 103 coal plants, mindful of smog and wasted capacity, New York Times, 2017, Jan. 18. https://nyti.ms/2jwnGOv. Accessed October 6, 2018.

  10. Meijer, B.H., Netherlands to ban coal-fired power plants in blow to RWE, Reuters, 2018, May 18. https://reut.rs/2Lp345L. Accessed October 6, 2018.

  11. Speight, J.G., The Chemistry and Technology of Coal, Boca Raton: CRC Press, 2012, 3rd ed.

    Google Scholar 

  12. Nyakuma, B., Bulg. Chem. Commun., 2016, vol. 48, no. 4, pp. 746–752.

    Google Scholar 

  13. Ocheri, C., Ajani, O., Daniel, A., and Agbo, N., J. Powder Metall. Min., 2017, vol. 6, no. 151, p. 2.

    Google Scholar 

  14. Adeleke, A. and Onumanyi, P., J. Miner. Mater. Charact. Eng., 2007, vol. 6, no. 2, p. 121.

    Google Scholar 

  15. Nyakuma, B.B., Oladokun, O., Jauro, A., and Nyakuma, D.D., IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 217, no. 1, art. ID 012013.

  16. Chen, W.-H., Huang, M.-Y., Chang, J.-S., and Chen, C.-Y., Bioresour. Technol., 2014, vol. 169, pp. 258–264.

    Article  CAS  PubMed  Google Scholar 

  17. Bergman, P.C.A., Boersma, A.R., Zwart, R.W.H., and Kiel, J.H.A., Torrefaction for Biomass Co-Firing in Existing Coal-Fired Power Stations: Report No. ECN-C-05-013, Petten: Energy Centre of Netherlands, 2005.

  18. Bridgeman, T., Jones, J., Shield, I., and Williams, P., Fuel, 2008, vol. 87, no. 6, pp. 844–856.

    Article  CAS  Google Scholar 

  19. Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A.R., and Lehmann, J., Biol. Fertil. Soils, 2012, vol. 48, no. 3, pp. 271–284.

    Article  CAS  Google Scholar 

  20. Nyakuma, B., Jauro, A., Oladokun, O., Bello, A., Alkali, H., Modibo, M., and Abba, M., Petrol. Coal, 2018, vol. 60, no. 4, pp. 641–649.

    Google Scholar 

  21. Sun, Q., Li, W., Chen, H., Li, B., and Sun, Q., Energy Sources, Part A, 2006, vol. 28, no. 9, pp. 865–874.

    CAS  Google Scholar 

  22. Grainger, L. and Gibson, J., Coal Utilization: Technology, Economics and Policy, New York: Springer-Verlag, 2012.

    Google Scholar 

  23. Mastalerz, M., Wilks, K., Bustin, R., and Ross, J., Org. Geochem., 1993, vol. 20, no. 2, pp. 315–325.

    Article  CAS  Google Scholar 

  24. Opara, A., Adams, D., Free, M., McLennan, J., and Hamilton, J., Int. J. Coal Geol., 2012, vol. 96, pp. 1–8.

    Article  CAS  Google Scholar 

  25. Thapa, K., Qi, Y., and Hoadley, A., Colloids Surf. A, 2009, vol. 334, nos. 1–3, pp. 66–73.

    Article  CAS  Google Scholar 

  26. Yuan, H.-I., Toyota, K., and Kimura, M., Bull. Jpn. Soc. Microb. Ecol., 1995, vol. 10, no. 2, pp. 59–65.

    Article  Google Scholar 

  27. Khaledian, Y., Pereira, P., Brevik, E.C., Pundyte, N., and Paliulis, D., EGU General Assembly Conf., Abstracts of Papers, Vienna, 2017, vol. 19, p. 128.

  28. Cepus, V., Borth, M., and Seitz, M., Int. J. Clean Coal Energy, 2016, vol. 5, no. 1, pp. 13.

    Article  CAS  Google Scholar 

  29. Georgakopoulos, A., Energy Sources, Part A, 2003, vol. 25, no. 10, pp. 995–1005.

    CAS  Google Scholar 

  30. Yuan, H.L., Yang, J.S., Wang, F.Q., and Chen, W., Appl. Biochem. Microbiol., 2006, vol. 42, no. 1, pp. 52–55.

    Article  CAS  Google Scholar 

  31. Kim, C.J. and Sohn, C.H., Fuel Process. Technol., 2012, vol. 100, pp. 73–83.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to gratefully acknowledge the materials support and technical assistance of the National Metallurgical Research and Development Centre (NMRDC Jos, Nigeria), Professor Dr. Aliyu Jauro of Abubakar Tafawa Balewa University (ATBU) Bauchi Nigeria, and Hydrogen and Fuel Laboratory of the School of Chemical and Energy Engineering, Universiti Teknologi Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Nyakuma.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyakuma, B.B., Oladokun, O., Abdullah, T.A. et al. Carbonization and Coke Characteristics of Ogboligbo Coal. Coke Chem. 61, 424–432 (2018). https://doi.org/10.3103/S1068364X18110066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X18110066

Keywords:

Navigation