Log in

The Ricci flow as a geodesic on the manifold of Riemannian metrics

  • Differential Geometry
  • Published:
Journal of Contemporary Mathematical Analysis Aims and scope Submit manuscript

Abstract

The Ricci flow is an evolution equation in the space of Riemannian metrics.A solution for this equation is a curve on the manifold of Riemannian metrics. In this paper we introduce a metric on the manifold of Riemannian metrics such that the Ricci flow becomes a geodesic.We show that the Ricci solitons introduce a special slice on the manifold of Riemannian metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Andrews, A. Hopper, “The Ricci Flow in Riemannian Geometry: A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem”, Lecture Notes in Mathematics, 2011, 2011.

    Google Scholar 

  2. M. Bauer, P. Harms, P. W. Michor, “Sobolev metrics on the manifold of all riemannian metrics”, J. Differ. Geom., 94(2), 187–365, 2013.

    MathSciNet  MATH  Google Scholar 

  3. M. Bauer, P. Harms, P. W. Michor, “Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation”, Ann. Glob. Anal. Geom., 41(4), 461–472, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Clarke, “The MetricGeometry of the Manifold of Riemannian Metrics over a Closed Manifold”, Calc.Var., 39, 533–545, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Clarke, “The Completion of the Manifold of Riemannian Metrics” J. Differ. Geom., 93(2), 203–268, 2013.

    MathSciNet  MATH  Google Scholar 

  6. A. S. Dancer, M. Y. Wang, “On Ricci solitons of cohomogeneity one”, Ann. Glob. Anal. Geom, 39(3), 259–292, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. M. DeTurck, “Deforming metrics in the direction of their Ricci tensors”, J. Differ. Geom., 18(1), 157–162, 1983.

    MathSciNet  MATH  Google Scholar 

  8. D. Ebin, “The manifold of Riemannian metrics”, Proc.Symp. PureMath., 15, 11–40, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Eells, J. H. Sampson, “Harmonic map**s of Riemannian manifolds”, AM. J. MATH., 86(1), 109–160, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. S. Freed, D. Groisser, “The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group”, Michigan Math. J., 36, 323–344, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Ghahremani-Gol, A. Razavi, “Ricci flow and the manifold of Riemannian metrics”, Balkan J.Geom. Appl., 18(2), 20–30, 2013.

    MathSciNet  MATH  Google Scholar 

  12. O. Gil-Medrano, P. W. Michor, “The Riemannian manifold of all Riemannian metrics”, Q. J. Math.Oxf. Ser. (2) 42(166), 183–202, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. S. Hamilton, “The inverse function theorem of Nash and Moser”, Bull. Am. Math. Soc., 7(1), 65–222, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. S. Hamilton, “Three-manifolds with positive Ricci curvature”, J. Differ. Geom., 17(2), 255–306, 1982.

    MathSciNet  MATH  Google Scholar 

  15. A. Kriegl, P. W. Michor, The convenient setting of global analysis (volume 53 ofMathematical Surveys and Monographs, AmericanMathematical Society, Providence, 1997).

    Book  MATH  Google Scholar 

  16. P. W. Michor, D. Mumford, “Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms”, Doc. Math., 10, 217–245, 2005.

    MathSciNet  MATH  Google Scholar 

  17. P. W. Michor, D. Mumford, “Riemannian geometries on spaces of plane curves”, J. Eur. Math. Soc. (JEMS), 8, 1–48, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Nitta, “Conformal sigma models with anomalous dimensions and Ricci solitons”, Mod. Phys. Lett. A, 20, 577–584, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Perrone, “Geodesic Ricci solitons on unit tangent sphere bundles”, Ann. Glob. Anal. Geom, 44(2), 91–103, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  20. N. K. Smolentsev, “Natural weak Riemannian structures on the space of Riemannian metrics”, Siberian Math J., 35(2), 396–402, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Tsatis, “Mean curvature flow on Ricci solitons”, J. Phys. A: Math. Theor., 43, 045202–045215, 2010.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ghahremani-Gol.

Additional information

Original Russian Text © H. Ghahremani-Gol, A. Razavi, 2016, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Matematika, 2016, No. 5, pp. 38-48.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghahremani-Gol, H., Razavi, A. The Ricci flow as a geodesic on the manifold of Riemannian metrics. J. Contemp. Mathemat. Anal. 51, 215–221 (2016). https://doi.org/10.3103/S1068362316050010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362316050010

MSC2010 numbers

Keywords

Navigation