Log in

Gas- and Biosensors Made from Metal Oxides Doped with Carbon Nanotubes

  • Published:
Journal of Contemporary Physics (Armenian Academy of Sciences) Aims and scope

Abstract

Single wall version of carbon nanotubes (SWCNTs) is promising for the detection of many important gases including gases exhaled by the organism. Properties of such CNT-noble metal sensors, detectors of gases exhaled by the organism, biosensors and other applications of CNT sensors in medicine are reported. Very promising is the realization of gas sensors based on metal oxides (especially SnO2) doped with CNTs. VOC sensors based on ruthenate multi-walled carbon nanotubes coated with tin-dioxide nanoparticles (MWCNTs/SnO2) nanocomposite structures were prepared and investigated in Yerevan State University (YSU) using three methods. The optimal conditions, operating temperature and the mass ratio of the components are established for the manufacturing of acetone and toluene as well as ethanol and methanol vapors detectors. The results of research works related to the study of MWCNT-SnO2 nanocomposite sensors of propylene glycol (PG), dimethylformamide (DMF) and formaldehyde (FA) vapors are also presented in this paper. The dependence of the sensor response on gas concentration is linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Iijima, S., Nature, 1991, vol. 354, p. 56.

    Article  ADS  Google Scholar 

  2. Harris, P., Carbon nanotubes and related structures. USA: Cambridge University Press, p. 279 (1999).

    Book  Google Scholar 

  3. Ellis, J.E. and Star, A., ChemPlusChem, 2016, vol. 81, p. 1248.

    Article  Google Scholar 

  4. Ahmadi, M. et al., Compos. Sci. Technol., 2016, vol. 134, p. 1.

    Article  Google Scholar 

  5. Maruyama, B. and Alam, K., SAMPE J., 2002, vol. 38, p. 59.

    Google Scholar 

  6. Wu, Z. et al., Nanoscale., 2020, vol. 12, p. 10149.

    Article  Google Scholar 

  7. Mo, Z. et al., Carbon, 2019, vol. 144, p. 433.

    Article  Google Scholar 

  8. Souto, L.F.C. and Soares, B.G., Prog. Org. Coat., 2020, vol. 143, p. 105598.

    Article  Google Scholar 

  9. Hassan, A.G. et al., Surf. Coat. Technol., 2020, vol. 401, p. 126257.

    Article  Google Scholar 

  10. Medupin, R.O. et al., Sci. Rep., 2019, vol. 9, p. 1.

    Article  Google Scholar 

  11. Abidin, M.S.Z. et al., Compos. Sci. Technol., 2019, vol. 170, p. 85.

    Article  Google Scholar 

  12. Feng, D., J. Mater. Chem. C, 2019, vol. 7, p. 7938.

    Article  Google Scholar 

  13. Zhou, E. et al., Carbon, 2018, vol. 133, p. 316.

    Article  Google Scholar 

  14. Chen, M. et al., Langmuir, 2019, vol. 35, p. 6321.

    Article  Google Scholar 

  15. Guo, F. et al. Nano Lett., 2019, vol. 19, p. 6377.

    Article  ADS  Google Scholar 

  16. Chen, M. et al., ACS Appl., 2019, vol. 11, p. 42156.

    Google Scholar 

  17. Chen, M. et al., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 31208.

    Article  Google Scholar 

  18. Chen, M. et al., Chem. Mater., 2017, vol. 29, p. 9680.

    Article  Google Scholar 

  19. Chen, M. et al., Chem. Eng. J., 2020, vol. 220, p. 124633.

    Article  ADS  Google Scholar 

  20. Chen, M. and Shao. L.L., Chem. Eng. J., 2016, vol. 304, p. 629.

    Article  Google Scholar 

  21. Chen, M. et al., Chem. Eng. J., 2017, vol. 313, p. 791.

    Article  Google Scholar 

  22. Chen M., et al., Chem. Eng. J., 2016, vol. 304, p. 303.

    Article  Google Scholar 

  23. Chen, M. et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 26030.

    Article  Google Scholar 

  24. Chen, M. et al., ACS Appl. Mater. Interfaces, 2017, vol. 9, p. 17949.

    Article  Google Scholar 

  25. Chen, M. et al., J. Mater. Chem. C., 2014, vol. 2, p. 10312.

    Article  Google Scholar 

  26. Janudin, N. et al., ZULFAQAR Journal of Defence Science, Engineering & Technology, 2018, vol. 65, p. 1.

    Google Scholar 

  27. Janudin, N. et al., J. Nanotechnol., 2019, vol. 2018, p. 1.

    Article  Google Scholar 

  28. Maity, D. et al., Sens. Actuators B, 2018, vol. 261, p. 297.

    Article  Google Scholar 

  29. Schroeder, V. et al., Chem. Rev., 2018, vol. 119, p. 599.

    Article  Google Scholar 

  30. Schroeder, V. et al., RSC Adv., 2020, vol. 10, p. 43704.

    Article  Google Scholar 

  31. Aroutiounian, V.M., Sens Transducers, 2018, vol. 223, no. 7, p. 9.

    Google Scholar 

  32. Aroutiounian, V.M. et al., Sens. Actuator B, 2013, vol. 177, p. 308.

    Article  Google Scholar 

  33. Adamyan, Z.N. et al., South Florida Journal of Development Miami, 2020, vol. 2, no. 1, p. 1067.

    Google Scholar 

  34. Aroutiounian, V.M., Armenian Journal of Physics, 2018, vol. 11, no. 1, p. 39.

    Google Scholar 

  35. Yahya, M.S. and Ismail, M., J. Phys. Chem. C., 2018, vol. 122, p. 11222.

    Article  Google Scholar 

  36. Mananghaya, M. et al., Sci. Rep., 2016, vol. 6, p. 27370.

    Article  ADS  Google Scholar 

  37. Park, S. et al., Nanomaterials, 2018, vol. 8, p. 378.

    Article  Google Scholar 

  38. Song, Y. et al., J. Alloys Compd., 2020, vol. 816, p. 152648.

    Article  Google Scholar 

  39. Geier, M.L. et al., Nano Lett., 2013, vol. 13, no. 10, p. 4810.

    Article  ADS  Google Scholar 

  40. Cao, Q. and Rogers, J., Adv. Mater., 2009, vol. 21, p. 29.

    Article  Google Scholar 

  41. Park, S. et al., Nanoscale, 2013, vol. 5, p. 1727.

    Article  ADS  Google Scholar 

  42. Shulaker, M.M. et al., Nature, 2013, vol. 501, p. 526.

    Article  ADS  Google Scholar 

  43. Hong, G. et al., Chem. Rev., 2015, vol. 115, p. 10816.

    Article  Google Scholar 

  44. Wang, J., Electroanalysis, 2005, vol. 17, p. 7.

    Article  Google Scholar 

  45. Arash, B. and Wang, Q., Sci. Rep., 2013, vol. 3, p. 1782.

    Article  ADS  Google Scholar 

  46. Chen, G. et al., Ibid, 2011, vol. 2, p. 343.

    Google Scholar 

  47. Zhang, X. and Cui, H., Nanoscale Research Letters, 2017, vol. 12, p. 177.

    Article  ADS  Google Scholar 

  48. Zaporotskova, I.V. et al., Modern Electronic Materials, 2016, vol. 2, p. 9.

    Article  Google Scholar 

  49. Bannov, A.G. et al., Micromachines, 2021, vol. 12, p. 186.

    Article  Google Scholar 

  50. Aroutiounian, V.M., Lithuanian Journal of Physics, 2015, vol. 55, p. 319.

    Google Scholar 

  51. Kim, J., Journal of Nanomaterials, 2012, ID: 741647.

  52. Tang, S. et al., Frontiers in chem, 2020, vol. 8, p. 174.

    Article  ADS  Google Scholar 

  53. Wang, Y. and Yeow, J.T.W., J. Sensors, 2009, ID: 493904.

  54. Camilli, L. and Passacantando, M., Chemosensors, 2018, vol. 6, p. 62.

    Article  Google Scholar 

  55. Zanolli, Z.et al., ACS Nano, 2011, vol. 5, p. 4592.

    Article  Google Scholar 

  56. Penza, M. et al., Sens. Actuators B, 2009, vol. 140, p. 176.

    Article  Google Scholar 

  57. Shao, M., Journal of Power Sources, 1996, vol. 5, p. 2433.

    Google Scholar 

  58. Mubeen, S. et al., J. of Physical Chemistry C, 2014, vol. 17, p. 6321.

    Google Scholar 

  59. Lundström, I. et al., Sens Actuators B, 1990, vol. 1, p. 15.

    Article  Google Scholar 

  60. Abdelhalim, A. et al., Nanotechnology, 2014, vol. 25, p. 055208.

    Article  ADS  Google Scholar 

  61. Mubeen, S. et al., Analytical Chemistry, 2015, vol. 82, p. 250.

    Article  Google Scholar 

  62. Goldsmith, B.R., Science, 2007, vol. 315 (5808), p. 77.

    Article  ADS  Google Scholar 

  63. Gonget, J. et al., Sensors.Actuators B, 2008, vol. 130, p. 829.

    Article  Google Scholar 

  64. Rigoni, F. et al., Carbon, 2014, vol. 80, p. 356.

    Article  Google Scholar 

  65. Ellis, J.E. et al., J. Phys. Chem. Lett., 2015, vol. 6, p. 712.

    Article  Google Scholar 

  66. Sun, Y. and Wang, H.H., Adv. Mater., 2007, vol. 19, p. 2818.

    Article  Google Scholar 

  67. Cui, S.et al., ACS Appl. Mater. Interfaces, 2012, vol. 4, p. 4898.

    Article  Google Scholar 

  68. Ding, M., Sorescu, D.C., and Star, A., J. Am. Chem. Soc., 2013, vol. 135, p. 9015.

    Article  Google Scholar 

  69. Dang, L. et al., J. Mater. Chem. A, 2014, vol. 2, p. 4558.

    Article  Google Scholar 

  70. Liu, H. et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, p. 840.

    Article  ADS  Google Scholar 

  71. Peng, G. et al., J. Mater. Chem. C, 2016, vol. 4, p. 657.

    Google Scholar 

  72. Jurs, P.C., Bakken, G.A., and McClelland, H.E., Chem. Rev., 2000, vol. 1, p. 2649.

    Article  Google Scholar 

  73. Kubert, N.J. et al., ACS Nano, 2013, vol. 7, p. 280.

    Google Scholar 

  74. Chatterjee, S., Castro, M., and Feller, J.F., Sens. Actuators B, 2015, vol. 220, p. 840.

    Article  Google Scholar 

  75. Peng, G., Tisch, U., and Haick, H., Nano Lett., 2009, vol. 9, p. 1362.

    Article  ADS  Google Scholar 

  76. Peng, G., Trock, E., and Haick, H., Nano Lett., 2008, vol. 8, p. 3631.

    Article  ADS  Google Scholar 

  77. Hong, H.P. et al., Sens. Actuators B, 2015, vol. 220, p. 27.

    Article  Google Scholar 

  78. Aroutiounian, V.M., J. Nanomed Nanotechnol., 2020, vol. 11, p. 3.

    Google Scholar 

  79. Aroutiounian, V.M., Ibid, 2021, vol. 12, p. 3.

    Google Scholar 

  80. Aroutiounian, V.M., Biomedical J Sci & Tech Research, 2019, vol. 12, p. 283.

    Google Scholar 

  81. Dedov, I.I. and Shestakova, M.V., Diabetes mellitus: diagnosis, treatment, prevention. Medical Information Agency, LLC Publishing House, 2011.

    Google Scholar 

  82. Saasa, V. et al., Diagnostics, 2018, vol. 8, p. 12.

    Article  Google Scholar 

  83. Tang, L. et al., Sensors (Basel), 2020, vol. 23, p. 6925.

    Article  ADS  Google Scholar 

  84. Rydosz, A., Sensors, 2018, vol. 18, p. 2298.

    Article  ADS  Google Scholar 

  85. Hopley, E.L. et al., Advance in Biotechnology Advances, 2015.

  86. Novak, J.P. et al., Applied Physics Letters, 2003, vol. 83, p. 4026.

    Article  ADS  Google Scholar 

  87. Aroutiounian, V.M., Int. Sci. J. Alternative Energy Ecology, 2018, vol. 38, p. 249.

    Google Scholar 

  88. Aroutiounian, V.M. et al., Int J Emerging Trends in Science and Technology, 2014, vol. 1, no. 8, p. 1309.

    Google Scholar 

  89. Ahmadnia-Feyzabad, S. et al., Sens Actuators B Chem., 2012, vol. 166–167, p. 150.

    Article  Google Scholar 

  90. Salehi, S. et al., Ibid, 2014, vol. 205, p. 261.

    Google Scholar 

  91. Koo, W.T. et al., ACS Appl. Mater. Inter., 2017, vol. 9, no. 11, p. 18069.

    Article  Google Scholar 

  92. Mirzaei, A., Hashemi, B., and Janghorban, K., J. Mater. Sci. Mater. Electron, 2016, vol. 27, p. 3109.

    Article  Google Scholar 

  93. Jiang, Z. et al., Ceram. Int., 2016, vol. 42, no. 14, p. 15881.

    Article  Google Scholar 

  94. Sensor composition for acetone detection in breath. Patents US 9.470,675 B2, EP2845009B1.

  95. Nar**ary, M. et al., Mater. Des., 2017, vol. 115, p. 158.

    Article  Google Scholar 

  96. Cao, Z. et al., Nanoscience Res. Lett., 2016, vol. 11, p. 347.

    Article  ADS  Google Scholar 

  97. Aroutiounian, V.M. and Hovhannisyan, A., Biomed. J. Sci. & Tech. Res., 2020, vol. 27, no. 1, p. 20452.

    Google Scholar 

  98. Yang, N. et al., Sens. Actuators B, 2015, vol. 207, p. 690.

    Article  Google Scholar 

  99. Clark, L.C. and Lyons, C., Ann. N. Y. Acad. Sci., 1962, vol. 102, p. 29.

    Article  ADS  Google Scholar 

  100. Raicopol, M. et al., Nanoscale Res. Lett., 2013, vol. 316, p. 1.

    Google Scholar 

  101. Guo, X. et al., Adv. Mater., 2013, vol. 25, no. 25, p. 3397.

    Article  Google Scholar 

  102. Allen, B.L., Kichambare, P.D., and Star, A., Adv. Mater., 2007, vol. 19, no. 11, p. 1439.

    Article  Google Scholar 

  103. D.R. Thévenot et al., Biosens Bioelectron, 16(1-2), 121 (2001).

    Article  Google Scholar 

  104. Byon, H.R. and Choi, H.C., J. Am. Chem. Soc., 2006, vol. 128, no. 7, p. 2188.

    Article  Google Scholar 

  105. Tang, X.W. et al., Nano Lett., 2006, vol. 6, no. 8, p. 1632.

    Article  ADS  Google Scholar 

  106. Kim, M.J.B. et al., J. Critical reviews, 2020, vol. 7, p. 2923.

    Google Scholar 

  107. Gruner, G., Analyt. Bioanalytical Chemistry, 2006, vol. 384, p. 322.

    Article  Google Scholar 

  108. Nie, C. et al., J. Electroanal Chem., 2012, vol. 666, p. 85.

    Article  Google Scholar 

  109. Anker, J.N. et al., In: On-sensing with plasmonic nanosensors. UK, London: Macmillan Publishers Ltd, 2009, p. 308.

    Google Scholar 

  110. Farrera, C., Torres, A., and Feliu, F., ACS Nano, 2017, vol. 11, no. 11, p. 10637.

    Article  Google Scholar 

  111. Shao, L., Gao, Y., and Yan, F., Sensors, 2011, vol. 11, no. 12, p. 11736.

    Article  ADS  Google Scholar 

  112. Ramgir, N.S., Yang, Y., and Zacharias, M., Nanowire-based sensors. Small, 2010, vol. 6, no. 16, p. 1705.

    Article  Google Scholar 

  113. Chen, Z. et al., Nanoscale, 2011, vol. 3, no. 5, p. 1949.

    Article  ADS  Google Scholar 

  114. Liu, Y., Dong, X., and Chen, P., Chem. Soc. Rev., 2012, vol. 41, no. 6, p. 2283.

    Article  Google Scholar 

  115. Shen, J. et al., Chem. Commun., 2012, vol. 48, p. 3686.

    Article  Google Scholar 

  116. Gao, C. et al., Nanoscale, 2012, vol. 4, p. 1948.

    Article  ADS  Google Scholar 

  117. Liu, Z. et al., Nano Res., 2009, vol. 2, p. 85.

    Article  Google Scholar 

  118. Yang, W. et al., Angew. Chem. Int. Ed., 2010, vol. 49, no. 12, p. 2114.

    Article  Google Scholar 

  119. Boghossian, A.A. et al., Chem. Sus. Chem., 2011, vol. 4, no. 7, p. 848.

    Article  Google Scholar 

  120. Kim, S.J. et al., Acc. Chem. Res., 2017, vol. 50, no. 7, p. 1587.

    Article  Google Scholar 

  121. Alvarezet, M.M. et al., ACS Nano, 2017, vol. 11, no. 6, p. 5195.

    Article  Google Scholar 

  122. Kruss, S. et al., Adv. Drug Deliv. Rev., 2013, vol. 65, p. 1933.

    Article  Google Scholar 

  123. Eatemadi, A. et al., Nanoscale Research Letters, 2014, vol. 9, p. 393.

    Article  ADS  Google Scholar 

  124. Iverson, N.M. et al., Nat. Nanotechnol., 2013, vol. 8, p. 873.

    Article  Google Scholar 

  125. Ménard-Moyon, C. et al., Expert Opin Drug Discov., 2010, vol. 5, no. 7, p. 691.

    Article  Google Scholar 

  126. Wu, Y. et al., ACS Nano, 2008, vol. 2, no. 10, p. 2023.

    Article  Google Scholar 

  127. Bisker, G. et al., Nat. Commun., 2016, vol. 7, p. 1.

    Article  Google Scholar 

  128. Zhang, J. et al., Nat. Nanotechnol., 2013, vol. 8, no. 12, p. 959.

    Article  ADS  Google Scholar 

  129. Beyene, A.G. et al., Biochemistry, 2018, vol. 57, no. 45, p. 6379.

    Article  Google Scholar 

  130. Dinarvand, M. et al., Nano Lett., 2019, vol. 19, p. 6604.

    Article  ADS  Google Scholar 

  131. Hendler, N. and Bisker, G., Sensors, 2019, vol. 19, p. 5403.

    Article  ADS  Google Scholar 

  132. Ahn, J.-H. et al., Nano Lett., 2011, vol. 11, no. 7, p. 2743.

    Article  ADS  Google Scholar 

  133. Reuel, N.F., Ahn, J.H., and Boghossian, A., US patent, US10, 215, 752 (2010).

  134. Pan, J., Li, F., and Choi, J.H., J. Mater. Chem. B, 2017, vol. 5, p. 6511.

    Article  Google Scholar 

  135. Aroutiounian, V.M., Journal of Nanomedicine & Nanotechnology, 2021, vol. 12, p. 560.

    Google Scholar 

  136. Alizadeh, N., Jamalabadi, H., and Tavoli, F., IEEE Sensors J., 2020, vol. 20, no. 1, p. 5.

    Article  ADS  Google Scholar 

  137. Han, Z.J. et al., RSC Adv., 2013, vol. 3, no. 28, p. 11058.

    Article  ADS  Google Scholar 

  138. Nemeth, Z. et al., R Soc Open Sci., 2016, vol. 6, no. 1, p. 181294.

    Article  Google Scholar 

  139. Meng, X. et al., J, Biomed, Mater Res., 2013, vol. 101, no. 4, p. 1095.

    Article  Google Scholar 

  140. Mooney, E. et al., Biomaterials, 2012, vol. 33, no. 26, p. 6132.

    Article  Google Scholar 

  141. Sheikhpour, M., Golbabaie, A., and Kasaeian, A., Mater Sci. Eng. C, 2017, vol. 76, p. 1289.

    Article  Google Scholar 

  142. Badrzadeh, F., Rahmati-Yamchi, M., and Badrzadeh, K., Artif. Cells Nanomed. Biotechnol., 2016, vol. 44, no. 2, p. 618.

    Article  Google Scholar 

  143. Sheikhpour, M. et al., International Journal of Nanomedicine, 2020, vol. 15, p. 7063.

    Article  Google Scholar 

  144. Kayat, J. et al., Nanomedicine, 2011, vol. 7, p. 40.

    Article  Google Scholar 

  145. Set, J. et al., J. Toxical Environ Health A, 2010, vol. 73, no. 21-22, p. 1521.

    Article  Google Scholar 

  146. Han, Z.J. et al., RSC Adv., 2013, vol. 3, no. 28, p. 11058.

    Article  ADS  Google Scholar 

  147. Pacurari, M., Castranova, V., and Vallyathan, V.J., J. Toxical. Environ. Health A, 2010, vol. 73, no. 5, p. 378.

    Article  Google Scholar 

  148. Nasser, I.M. and Abu-Naser, S.S., Int. J. Eng. Inf. Syst., 2019, vol. 3, no. 3, p. 17.

    Google Scholar 

  149. Zhou, J. et al., Anal. Chim. Acta., 2019, vol. 996, p. 1.

    Article  ADS  Google Scholar 

  150. Shakeel, P.M., Burhanuddin, M.A., and Desa, M.I., Measurement, 2019, vol. 145, p. 702.

    Article  ADS  Google Scholar 

  151. Stueckle, T.A. et al., Nanotoxicology, 2017, vol. 11, no. 5, p. 613.

    Article  Google Scholar 

  152. Gasparri, R., Sedda, G., and Spaggiari, L., Sensors, 2018, vol. 18, no. 9, p. 3029.

    Article  ADS  Google Scholar 

  153. Khanmohammadi, A. et al., Talanta, 2020, vol. 206, p. 120251.

    Article  Google Scholar 

  154. Zhou, L. et al., Topical In Vitro, 2017, vol. 42, p. 292.

    Article  Google Scholar 

  155. Park, C.H. et al., ACS Sens, 2018, vol. 3, no. 11, p. 2432.

    Article  Google Scholar 

  156. Aasi, A., Aghaei, S.M., and Panchapakesan, B., Nanotechnology, 2020, vol. 31, no. 41, p. 415707.

    Article  Google Scholar 

  157. Choudhary, M., Singh, A., and Kaur, S., Appl. Biochem. Biotechnol., 2014, vol. 174, no. 3, p. 1188.

    Article  Google Scholar 

  158. Wan, Q., Molecular Physics, 2018, vol. 116, p. 2205.

    Article  ADS  Google Scholar 

  159. Gokhale, S., Kohajda, T., and Schlink, U., Sci. Total Environ., 2008, vol. 407, p. 122.

    Article  ADS  Google Scholar 

  160. Wang, S., Ang, H.M., and Tade, M.O., Environ. Int., 2007, vol. 33, p. 694.

    Article  Google Scholar 

  161. Inyawilert, K. et al., Sensors and Actuators B, 2014, vol. 192, p. 745.

    Article  Google Scholar 

  162. Feyzabad, S.A. et al., Ibid, 2012, vol. 166–167, p. 150.

    Google Scholar 

  163. Li, X., Chang, Y., and Long, Y., Mater. Sci. Eng. C, 2012, vol. 32, p. 817.

    Article  Google Scholar 

  164. Garzella, C. et al., Sens. Actuators B, 2002, vol. 83, p. 230.

    Article  Google Scholar 

  165. Brousse, T. and Schleich, D.M., Ibid, 1996, vol. 31, p. 77.

    Google Scholar 

  166. Salaspuro, M., Scandinavian J. of Gastroenterology, 2009, vol. 44, no. 8, p. 912.

    Article  Google Scholar 

  167. Bai, X. et al., Sens. Actuators B, 2014, vol. 193, p. 100.

    Article  Google Scholar 

  168. Makisimovich, N. et al., Ibid B, 1996, vol. 35–36, p. 419.

    Google Scholar 

  169. Wang, L. et al., Chem. Mater., 2008, vol. 20, p. 4794.

    Article  Google Scholar 

  170. Lerchner, J., Caspary, D., and Wolf, G., Sens. Actuators B: Chem., 2000, vol. 70, p. 57.

    Article  Google Scholar 

  171. Consales, M. et al., Ibid B: Chem., 2009, vol. 138, p. 351.

    Google Scholar 

  172. Sasahara, T. et al., Ibid B: Chem., 2007, vol. 126, p. 536.

    Google Scholar 

  173. Hanada, M. et al., Anal. Chim. Acta, 2003, vol. 475, p. 27.

    Article  Google Scholar 

  174. Xu, C. et al., Sensors and Actuators B, 1991, vol. 3, p. 147.

    Article  Google Scholar 

  175. Korotcenkov, G. et al., Critical Reviews in Solid State and Materials Sciences, 2009, vol. 34, p. 1.

    Article  ADS  Google Scholar 

  176. Adamyan, A.Z. et al., International Journal of Hydrogen Energy, 2007, vol. 32, p. 4101.

    Article  Google Scholar 

  177. Tonezzer, M. and Hieu, N.V., Sensors and Actuators B, 2012, vol. 163, p. 146.

    Article  Google Scholar 

  178. Wang, L.F., Journal of Physical Chemistry C, 2008, vol. 112, p. 6643.

    Article  ADS  Google Scholar 

  179. Qin, L.P. et al., Nanotechnology, 2008, vol. 19, p. 185705.

    Article  ADS  Google Scholar 

  180. Han, X.M. et al., Journal of Alloys and Compounds, 2008, vol. 461, p. L26.

    Article  Google Scholar 

  181. Kwon, Y. et al., Sensors and Actuators B, 2012, vol. 173, p. 441.

    Article  Google Scholar 

  182. Li, Y.-J., Ibid B, 2012, vol. 161, p. 734.

    Google Scholar 

  183. Tan, Y., Thin Solid Films, 2008, vol. 516, p. 7840.

    Article  ADS  Google Scholar 

  184. Cheng, L. et al., Sensors and Actuators B, 2014, vol. 200, p. 181.

    Article  Google Scholar 

  185. Mei, L. et al., Ibid B, 2012, vol. 166–167, p. 7.

    Google Scholar 

  186. Zhao, L., Choi, M., Kim, H.-S., and Hong, S.-H., Nanotechnology, 2007, vol. 18, p. 445501.

    Article  Google Scholar 

  187. Ahmadnia-Feyzabad, S. et al., Ibid B, 2012, vol. 166–167, p. 150.

    Google Scholar 

  188. Aroutiounian, V.M. et al., Proc. of the 14th Int. Meeting on Chemical sensors (IMCS 2012), May 20–23, 2012, Germany, Nuremberg: p. 1085.

  189. Aroutiounian, V.M. et al., Sensors and Actuators B, 2013, vol. 177, p. 308.

    Article  Google Scholar 

  190. Berki, P. et al., Carbon, 2013, vol. 60, p. 266.

    Article  Google Scholar 

  191. Hieu, N.V. et al., Sensors and Actuators B, 2008, vol. 129, p. 888.

    Article  Google Scholar 

  192. Liu, Y.-L. et al., Thin Solid Films, 2006, vol. 497, p. 355.

    Article  ADS  Google Scholar 

  193. Wei, B.-Y. et al., Sensors and Actuators B, 2004, vol. 101, p. 81.

    Article  Google Scholar 

  194. Korotcenkov, G., Han, S.H., and Cho, B.K., Journal of Sensor Science and Technology, 2013, vol. 22, no. 1, p. 1.

    Article  Google Scholar 

  195. Fiorito, A. et al., Am. J. Ind. Med., 1997, vol. 32, p. 255.

    Article  Google Scholar 

  196. Lefebvre, M.A. et al., Regul. Toxicol. Pharm., 2012, vol. 63, p. 171.

    Article  Google Scholar 

  197. Malaguarnera, G. et al., World. J. Gastroentero., 2012, vol. 18, p. 2756.

    Article  Google Scholar 

  198. Chang, H.Y. et al., Fertil. Steril., 2004, vol. 81, p. 1589.

    Article  Google Scholar 

  199. Robertson, O.H., Loosli, C.G., and Puck, T.T., J. Pharmacol. Exp. Ther., 1947, vol. 91, p. 52.

    Google Scholar 

  200. Salthammer, T., Mentese, S., and Marutzky, R., Chem. Rev., 2010, vol. 110, p. 2536.

    Article  Google Scholar 

  201. Ellenhorn, M.J. et al., Ellenhorn’s medical toxicology: diagnosis and treatment of human poisoning, 2nd edition, MD: Williams & Wilkins, Baltimore, USA, 1997, p. 1675.

    Google Scholar 

  202. Couteau, E. et al., Chem. Phys. Lett., 2003, vol. 378, p. 9.

    Article  ADS  Google Scholar 

  203. Magrez, A. et al., Materials, 2010, vol. 3, p. 4871.

    Article  ADS  Google Scholar 

  204. Nemeth, Z. et al., Phys. Status Solidi B, 2014, vol. 1, p. 1.

    MathSciNet  Google Scholar 

  205. Cui, S. et al., ACS Appl. Mater. Interfaces, 2012, vol. 4, no. 9, p. 4898.

    Article  Google Scholar 

Download references

Funding

This work is supported by State Committee of Science of Armenia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Aroutiounian.

Additional information

Translated by V.M. Aroutiounian

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aroutiounian, V.M. Gas- and Biosensors Made from Metal Oxides Doped with Carbon Nanotubes. J. Contemp. Phys. 57, 54–75 (2022). https://doi.org/10.3103/S1068337222010054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068337222010054

Keywords:

Navigation