Log in

Study of Silicon Etching Modes in Combined Plasma Discharge for the Formation of Optoelectronic Structures

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

We deal with issues related to the formation of ordered silicon nanostructures by processing in a combined fluoride plasma for the formation of monolithic-integrated A3B5 nanostructures. The dependences of the geometric parameters of the formed structures (wall inclination angle, height, and surface roughness) on the power of inductively coupled and capacitive plasma sources were obtained. It is shown that at a structure height of 245.2 nm the roughness was 1.56 ± 0.1 nm, the verticality of the obtained structures varied from 10° to 35°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Seo, D., Bae, J. S., Oh, E., Kim, S., and Lim, S., J. Vac. Sci. Technol., B, 2012, vol. 30, 06FF02.

    Article  Google Scholar 

  2. Didem, D., Frank, G., Valerio, P., et al., Nanotecnology, 2022, vol. 33, 485604.

    Article  Google Scholar 

  3. Tsui, B.-Y., Cheng, J.-C., Yen, C.-T., and Lee, C.-Y., Solid-State Electron., 2017, vol. 133, p. 83.

    Article  ADS  Google Scholar 

  4. Dowling, K.M., Ransom, E.H., and Senesky, D.G., J. Microelectromech. Syst., 2017, vol. 26, p. 135.

    Article  Google Scholar 

  5. Osipov, A.A., Iankevich, G.A., Speshilova, A.B., Osipov, A.A., Endiiarova, E.V., Berezenko, V.I., Tyurikova, I.A., Tyurikov, K.S., and Alexandrov, S.E., Sci. Rep., 2020, vol. 10, p. 19977.

    Article  Google Scholar 

  6. Kimura, T. and Hanaki, K., Jpn. J. Appl. Phys., 2008, vol. 47, p. 8546.

    Article  ADS  Google Scholar 

  7. Tasaka, A., Watanabe, E., Kai, T., et al., J. Vac. Sci. Technol., A, 2007, vol. 25, p. 391.

    Article  Google Scholar 

  8. Kwon, H.T., Kim, W.J., Shin, G.W., et al., J. Korean Phys. Soc., 2019, vol. 74, p. 1135.

    Article  ADS  Google Scholar 

  9. Zekentes, K., Pezoldt, J., and Veliadis, V., Mater. Res. Found., 2020, vol. 69, p. 175.

    Google Scholar 

  10. Ogawa, H., Arai, T., Yanagisawa, M., Ichiki, T., and Horiike, Y., Jpn. J. Appl. Phys., 2002, vol. 41, p. 5349.

    Article  ADS  Google Scholar 

  11. Raju, R., Kudo, D., Kubo, Y., Inaba, T., and Shindo, H., Jpn. J. Appl. Phys. 2003, vol. 42, p. 280.

    Article  ADS  Google Scholar 

  12. Alvarez, H.S., Cioldin, F.H., Silva, A.R., Espinola, L.C.J., Vaz, A.R., and Diniz, J.A., J. Microelectromech. Syst., 2021, vol. 30, no. 4, p. 668.

    Article  Google Scholar 

  13. Osipov, A.A., Speshilova, A.B., Endiiarova, E.V., Osipov, A.A., and Alexandrov, S.E., IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 862, 022039.

  14. Ding, R.X., Yang, Y.T., and Han, R.J., Semiconductors, 2009, vol. 30, 016001.

    Article  Google Scholar 

  15. Luna, L.E., Tadjer, M.J., Anderson, T.J., Imhoff, E.A., Hobart, K.D., and Kub, F.J.J., Micromech. Microeng., 2017, vol. 27, 095004.

    Article  Google Scholar 

  16. Osipov, A.A., Alexandrov, S.E., Solov’ev, Y.V., Uvarov, A.A., and Osipov, A.A., Russ. Microelectron., 2018, vol. 47, p. 427.

    Article  Google Scholar 

  17. Nanotechnology in Microelectronics, Ageev, O. and Konoplev, B., Eds., Moscow: Nauka, 2019.

    Google Scholar 

  18. Klimin, V.S., Morozova, Y.V., Kots, I.N., Vakulov, Z.E., and Ageev, O.A., Russ. Microelectron., 2022, vol. 51, no. 4, p. 236.

    Article  Google Scholar 

  19. Kots, I.N., Polyakova, V.V., Morozova, Y.V., Kolomiytse, A.S., Klimin, V.S., and Ageev, O.A., Russ. Microelectron., 2022, vol. 51, no. 3, p. 126.

    Article  Google Scholar 

  20. Dzhuplin, V.N., Klimin, V.S., Morozova, Y.V., Rezvan, A.A., Vakulov, Z.E., and Ageev, O.A., Russ. Microelectron., 2021, vol. 50, no. 6, p. 412.

    Article  Google Scholar 

  21. Vakulov, Z., Khakhulin, D., Geldash, A., Tominov, R.V., Klimin, V.S., Smirnov, V.A., and Ageev, O.A., J. Adv. Dielectr., 2022, vol. 12, no. 2, 2160019.

    Article  ADS  Google Scholar 

  22. Vakulov, Z., Khakhulin, D., Zamburg, E., Mikhaylichenko, A., Smirnov, V.A., Tominov, R.V., Klimin, V.S., and Ageev, O.A., Materials, 2021, vol. 14, no. 17, p. 4854.

    Article  ADS  Google Scholar 

  23. Vakulov, Z., Geldash, A., Khakhulin, D., Il’ina, M., Il’in, O., Klimin, V.S., Dzhuplin, V.N., Konoplev, B., He, Z., and Ageev, O.A., Materials, 2020, vol. 13, no. 18, p. 3984.

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out within the framework of Russian Science Foundation (project no. 20-69-46076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Klimin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimin, V.S., Kessler, I.O., Morozova, Y.V. et al. Study of Silicon Etching Modes in Combined Plasma Discharge for the Formation of Optoelectronic Structures. Bull. Russ. Acad. Sci. Phys. 86 (Suppl 1), S96–S99 (2022). https://doi.org/10.3103/S1062873822700460

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822700460

Navigation