Log in

Structural Macrokinetics of Combustion of Ti-Based Mixtures with Titanium Particles of Different Sizes

  • BRIEF COMMUNICATIONS
  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Experimental dependences of the combustion velocity on the size of titanium particles for powder and granular mixtures of 5Ti + 3Si, Ti + Cam, (Ti + Cam) + 20% Cu, (Ti + Cam) + 20% Ni, Ti + Ccr (with amorphous carbon in the form of soot and with crystalline carbon in the form of graphite) were compared. The results of experiments were explained by the retarding effect of impurity gases in powder mixtures when the conditions of warming up the particles before the combustion front were met. For all the studied granular mixtures, where the influence of impurity gases on the combustion velocity was leveled, analytical dependences of the combustion velocity on the size of titanium particles were in good agreement with the conclusions of the convective–conductive combustion model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. Hardt, A.P., and Phung, P.V., Propagation of gasless reactions in solids—I. Analytical study of exothermic intermetallic reaction rates, Combust. Flame, 1973, vol. 21, no. 1, pp. 77–89. https://doi.org/10.1016/0010-2180(73)90009-6

    Article  CAS  Google Scholar 

  2. Aldushin, A.P., Martem’yanova, T.M., Merzhanov, A.G., Khaikin, B.I., and Shkadinskii, K.G., Propagation of the front of an exothermic reaction in condensed mixtures with the interaction of the components through a layer of high-melting product, Combust. Explos. Shock Waves, 1972, vol. 8, pp. 159–167.

    Article  Google Scholar 

  3. Merzhanov, A.G., Solid flames: discoveries, concepts, and horizons of cognition, Comb. Sci. Technol., 1994, vol. 98, pp. 307–336. https://doi.org/10.1080/00102209408935417

    Article  CAS  Google Scholar 

  4. Chumakov, Y.A. and Knyazeva, A.G., Simulation of synthesis of matrix–inclusion composite materials during combustion, Combust. Explos. Shock Waves, 2021, vol. 57, no. 4, pp. 467–478. https://doi.org/10.1134/S0010508221040109

    Article  Google Scholar 

  5. Gabbasov, R.M., Kitler, V.D., Prokof’ev, V.G., and Shul’pekov, A.M., Passage of a gasless combustion wave through a perforated barrier, Combust. Explos. Shock Waves, 2022, vol. 58, no. 6, pp. 657–664. https://doi.org/10.1134/S001050822206003X

    Article  Google Scholar 

  6. Vershinnikov, V.I. and Filonenko, A.K., Pressure dependence of rate of gas-free combustion, Combust. Explos. Shock Waves, 1978, vol. 14, pp. 588–592.

    Article  Google Scholar 

  7. Kachelmayer, C.L., Varma, A., Rogachev, A.S., and Sytschev, A.E., Influence of reaction mixture porosity on the effective kinetics of gasless combustion synthesis, Ind. Eng. Chem. Res., 1998, vol. 37, pp. 2246–2249. https://doi.org/10.1021/ie9704915

    Article  Google Scholar 

  8. Shcherbakov, V.A., Sychev, A.E., and Shteinberg, A.S., Outgassing macrokinetics in SPS, Combust. Explos. Shock Waves, 1986, vol. 22, pp. 437–443. https://doi.org/10.1007/BF00862888

    Article  Google Scholar 

  9. Ponomarev, M.A. and Sapronov, Y.A., Measurement of the impurity gas pressure during combustion of a “gasless” system in a long cylindrical shell, Combust. Explos. Shock Waves, 2010, vol. 46, pp. 702–707. https://doi.org/10.1007/s10573-010-0093-6

    Article  Google Scholar 

  10. Seplyarskii, B.S., The nature of the anomalous dependence of the velocity of combustion of “gasless” systems on the sample diameter, Dokl. Phys. Chem., 2004, vol. 396, pp. 130–133. https://doi.org/10.1023/B:DOPC.0000033505.34075.0a

    Article  CAS  Google Scholar 

  11. Rubtsov, N.M., Seplyarskii, B.S., and Alymov, M.I., Ignition and Wave Processes in Combustion of Solids, Switzerland: Springer Cham, 2017. https://doi.org/10.1007/978-3-319-56508-8

  12. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G., Rubtsov, N.M., and Abzalov, N.I., Macrokinetic analysis of the combustion patterns in the transition from powder to granulated mixtures by the example of 5Ti + 3Si and Ti + C compositions, Combust. Flame, 2022, vol. 236, p. 111811. https://doi.org/10.1016/j.combustflame.2021.111811

    Article  CAS  Google Scholar 

  13. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G., and Abzalov, N.I., Macrokinetics of combustion of powder and granular titanium mixtures with different allotropic forms of carbon, Combust. Explos. Shock Waves, 2022, vol. 58, no. 3, pp. 355–361. https://doi.org/10.1134/S001050822203011X

    Article  Google Scholar 

  14. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G., Rubtsov, N.M., and Abzalov, N.I., Explanation of increase in combustion velocity of Ti + C powder mixture upon dilution with nickel using convective–conductive combustion model, Int. J. Self-Propag. High-Temp. Synth., 2022, vol. 31, no. 4, pp. 194–206. https://doi.org/10.3103/S1061386222040100

    Article  Google Scholar 

  15. Seplyarskii, B.S., Kochetkov, R.A., Lisina, T.G., Abzalov, N.I., and Vasilyev, D.S., On the nature of the multidirectional change in combustion velocity of Ti-based powder mixtures when diluted with inert additives, Int. J. Self-Propag. High-Temp. Synth., 2022, vol. 31, no. 4, pp. 283–287. https://doi.org/10.3103/S1061386222050065

    Article  CAS  Google Scholar 

  16. Zenin, A.A., Merzhanov, A.G., and Nersisyan, G.A., Thermal wave structure in SHS processes, Combust. Explos. Shock Waves, 1981, vol. 17, pp. 63–71.

    Article  Google Scholar 

  17. Slezak, T., Zmywaczyk, J., and Koniorczyk, P., Thermal diffusivity investigations of the titanium grade 1 in wide temperature range, AIP Conf. Proc., 2019, vol. 2170, p. 020019. https://doi.org/10.1063/1.5132738

    Article  CAS  Google Scholar 

  18. Zinov’ev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh [Thermophysical Properties of Metals at High Temperatures], Moscow: Metallurgiya, 1989.

    Google Scholar 

  19. Stankus, S.V., Savchenko, I.V., Agadzhanov, A.S., Yatsuk, O.S., and Zhmurikov, E.I., Thermophysical properties of MPG-6 graphite, High Temp, 2013, vol. 51, pp. 179–182. https://doi.org/10.1134/S0018151X13010173

    Article  CAS  Google Scholar 

  20. Korol’chenko, I.A., Kazakov, A.V., and Kukhtin, A.S., Eksperimental’noe opredelenie temperaturoprovodnosti materialov [Experimental determination of the thermal diffusivity of materials], Пoжapoвзpывoбeзoпacнocть, 2004, vol. 13, pp. 36–38.

    Google Scholar 

  21. Shanks, H.R., Maycock, P.D., Sidles, P.H., and Danielson, G.C., Thermal conductivity of silicon from 300 to 1400 K, Phys. Rev., 1963, vol. 130, pp. 1743–1748. https://doi.org/10.1103/physrev.130.1743

    Article  CAS  Google Scholar 

  22. Seplyarskii, B.S. and Kochetkov, R.A., Granulation as a tool for stabilization of SHS reactions, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 2, pp. 134–136. https://doi.org/10.3103/S106138621702011X

    Article  Google Scholar 

  23. Merzhanov, A.G., Rogachev, A.S., Umarov, L.M., and Kir’yakov, N.V., Experimental study of the gas phase formed in the processes of self-propagating high-temperature synthesis, Combust. Explos. Shock Waves, 1997, vol. 33, pp. 439–447. https://doi.org/10.1007/BF02671837

    Article  Google Scholar 

  24. Seplyarskii, B.S., Abzalov, N.I., Kochetkov, R.A., and Lisina, T.G., Combustion of granulated Ti–C–Ni mixtures: influence of granule size, Int. J. Self-Propag. High-Temp. Synth., 2021, vol. 30, no. 3, pp. 185–187. https://doi.org/10.3103/S1061386221030079

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. S. Seplyarskii or T. G. Lisina.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seplyarskii, B.S., Kochetkov, R.A. & Lisina, T.G. Structural Macrokinetics of Combustion of Ti-Based Mixtures with Titanium Particles of Different Sizes. Int. J Self-Propag. High-Temp. Synth. 32, 233–238 (2023). https://doi.org/10.3103/S106138622303010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106138622303010X

Keywords:

Navigation