Log in

An Improved Method for Determining Residual Stresses in Thin Hard Coatings

  • RELIABILITY, STRENGTH, AND WEAR RESISTANCE OF MACHINES AND STRUCTURES
  • Published:
Journal of Machinery Manufacture and Reliability Aims and scope Submit manuscript

Abstract

Methods have been developed for determining residual stresses in coatings of topocomposites; the appearance of interfacial fracture at the coating–substrate interface during instrumental indentation is typical for such materials. The novelty of the techniques consists in the analysis of the indentation diagram obtained as a result of a repeated indentation cycle. The results can be used for practical and scientific purposes to estimate qualitatively the type and value of uniaxial residual stresses in thin hard coatings of topocomposites in which the hardness of the substrate and coating differ significantly and the indentation process is accompanied by interfacial fracture along the coating–substrate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Voronin, N.A., Theoretical and experimental methods for study of deformation and destruction characteristics of tribotechnical topocomposites, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 5, pp. 398–407.  https://doi.org/10.3103/S105261881304016X

    Article  Google Scholar 

  2. Jang, J., Estimation of residual stress by instrumented indentation: A review, J. Ceram. Process. Res., 2009, vol. 10, pp. 391–400.

    Google Scholar 

  3. **ao, L., Ye, D., and Chen, Ch., A further study on representative models for calculating the residual stress based on the instrumented indentation technique, Comput. Mater. Sci., 2014, vol. 82, pp. 476–482.  https://doi.org/10.1016/j.commatsci.2013.10.014

    Article  Google Scholar 

  4. Tsui, T.Y., Oliver, W.C., and Pharr, G.M., Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy, J. Mater. Res., 1996, vol. 11, no. 3, pp. 752–759.  https://doi.org/10.1557/JMR.1996.0091

    Article  Google Scholar 

  5. Bolshakov, A., Oliver, W.C., and Pharr, G.M., Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations, J. Mater. Res., 1996, vol. 11, no. 3, pp. 760–768.  https://doi.org/10.1557/JMR.1996.0092

    Article  Google Scholar 

  6. Suresh, S. and Giannakopoulos, A.E., A new method for estimating residual stresses by instrumented sharp indentation, Acta Mater., 1998, vol. 46, no. 16, pp. 5755–5767.  https://doi.org/10.1016/S1359-6454(98)00226-2

    Article  Google Scholar 

  7. Carlsson, S. and Larsson, P.-L., On the determination of residual stress and strain fields by sharp indentation testing: Part I: Theoretical and numerical analysis, Acta Mater., 2001, vol. 49, no. 12, pp. 2179–2191.  https://doi.org/10.1016/S1359-6454(01)00122-7

    Article  Google Scholar 

  8. Chen, X., Yan, J., and Karlsson, A.M., On the determination of residual stress and mechanical properties by indentation, Mater. Sci. Eng., A, 2006, vol. 416, pp. 139–149.  https://doi.org/10.1016/j.msea.2005.10.034

    Article  Google Scholar 

  9. Lee, Y.-H. and Kwon, D., Estimation of biaxial surface stress by instrumented indentation with sharp indenters, Acta Mater., 2004, vol. 52, no. 6, pp. 1555–1563.  https://doi.org/10.1016/j.actamat.2003.12.006

    Article  Google Scholar 

  10. Ozaki, K., Ishikawa, H., Nakano, S., and Ogiso, H., Indentation method to measure the residual stress induced by ion implantation, Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 242, nos. 1–2, pp. 88–92.  https://doi.org/10.1016/j.nimb.2005.08.008

    Article  Google Scholar 

  11. Tang, Z., Guo, Ya., Jia, Zh., Li, Yu., and Wei, Q., Examining the effect of pileup on the accuracy of sharp indentation testing, Adv. Mater. Sci. Eng., 2015, vol. 2015, p. 528729.  https://doi.org/10.1155/2015/528729

    Article  Google Scholar 

  12. N’jock, M.Ye., Chicot, D., Ndjaka, J.M., Lesage, J., Decoopman, X., Roudet, F., and Mejias, A., A criterion to identify sinking-in and piling-up in indentation of materials, Int. J. Mech. Sci., 2015, vol. 90, pp. 145–150.  https://doi.org/10.1016/j.ijmecsci.2014.11.008

    Article  Google Scholar 

  13. Voronin, N.A., Effect of substrate material compliance on the character of topocomposite damage under instrumental indentation, J. Mach. Manuf. Reliab., 2020, vol. 49, no. 10, pp. 862–869.  https://doi.org/10.3103/S1052618820100118

    Article  Google Scholar 

  14. Oliver, W.C. and Pharr, G.M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 1992, vol. 7, no. 6, pp. 1564–1583.  https://doi.org/10.1557/JMR.1992.1564

    Article  Google Scholar 

  15. Abdul-Baqi, A. and van der Giessen, E., Delamination of a strong film from a ductile substrate during indentation unloading, J. Mater. Res., 2001, vol. 16, no. 5, pp. 1396–1407.  https://doi.org/10.1557/JMR.2001.0195

    Article  Google Scholar 

  16. Lu, M. and Huang, H., Interfacial energy release rates of SiN/GaAs film/substrate systems determined using a cyclic loading dual-indentation method, Thin Solid Films, 2015, vol. 589, pp. 822–830.  https://doi.org/10.1016/j.tsf.2015.07.027

    Article  Google Scholar 

  17. Raju, T.D., Kato, M., and Nakasa, K., Backward deviation and depth recovery of load-displacement curves of amorphous SiC film under repeating nanoindentation, Acta Mater., 2003, vol. 51, pp. 3585–3595.  https://doi.org/10.1016/S1359-6454(03)00176-9

    Article  Google Scholar 

  18. Jang, J., Estimation of residual stress by instrumented indentation: A review, J. Ceram. Process. Res., 2009, vol. 10, no. 3, pp. 391–400.

    Google Scholar 

  19. **ao, L., Ye, D., and Chen, C., A further study on representative models for calculating the residual stress based on the instrumented indentation technique, Comput. Mater. Sci., 2014, vol. 82, pp. 476–482.  https://doi.org/10.1016/j.commatsci.2013.10.014

    Article  Google Scholar 

  20. Fischer-Cripps, A.C., Critical review of analysis and interpretation of nanoindentation test data, Surf. Coat. Technol., 2006, vol. 200, nos. 14–15, pp. 4153–4165.  https://doi.org/10.1016/j.surfcoat.2005.03.018

    Article  Google Scholar 

  21. Hsu, T.-W., Greczynski, G., Boyd, R., Kolozsvári, S., Polcik, P., Bolz, S., Bakhit, B., and Odén, M., Influence of Si content on phase stability and mechanical properties of TiAlSiN films grown by AlSi-HiPIMS/Ti-DCMS co-sputtering, Surf. Coat. Technol., 2021, vol. 427, p. 127661.  https://doi.org/10.1016/j.surfcoat.2021.127661

    Article  Google Scholar 

  22. Greczynski, G., Lu, J., Johansson, M.P., Jensen, J., Petrov, I., Greene, J.E., and Hultman, L., Role of Tin+ and Aln+ ion irradiation (n = 1, 2) during Ti1-xAlxN alloy film growth in a hybrid HIPIMS/magnetron mode, Surf. Coat. Technol., 2012, vol. 206, nos. 19–20, pp. 4202–4211. https://doi.org/10.1016/j.surfcoat.2012.04.024

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Voronin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by N. Saetova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronin, N.A. An Improved Method for Determining Residual Stresses in Thin Hard Coatings. J. Mach. Manuf. Reliab. 51 (Suppl 1), S28–S35 (2022). https://doi.org/10.3103/S1052618822090199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1052618822090199

Keywords:

Navigation