Log in

Study of Thermal State of Mandrel Bars in a Three-High Rolling Mill

  • Published:
Steel in Translation Aims and scope

Abstract

The numerical analysis methods of the thermal state of mandrel bars in a three-high rolling mill are developed using modern computer software. The initial and boundary conditions are determined based on the special features of the rolling process in a three-high mandrel screw-rolling mill. A qualitative assessment of the thermal state of a mandrel bar is conducted, and its significant heterogeneity is revealed through a graphical representation. The effect of the rolling temperature and the diameter of the mandrel bar is found. Small-diameter mandrels are heated to higher temperatures (577°C) at a significantly lower gradient between the axial zone and the surface. The increase in the mandrel diameter to 154 mm reduces the outside surface temperature to 530°C and increases the temperature gradient in the near-surface layers to 18°C/mm. The temperature in the near-surface layers for the 154-mm-diameter mandrel at a distance of 10–15 mm from the surface decreases from 530 to 315°C. The special features of the temperature field in the cross section are determined in consideration of the thermal interaction between the shell and the mandrel bar in contact with the hot metal and in the roll gaps. The temperature of the near-surface layers in the contact area is 30°C higher than in the gaps. The temperature dependences of the characteristic points in the cross section on the rolling time are determined. The intensive growth is found to occur in the first two seconds according to the parabolic law, and then according to the linear law. The temperature of the central layers with a radius of 50 mm increases with a significantly lower rate by about 100°C for all rolling period, while the near-surface layers are heated by 300–400°C for the same period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Vavilkin, N.M. and Bukhmirov, V.V., Proshivnaya opravka (Piercing Mandrel), Moscow: Mosk. Inst. Stalei i Splavov, 2000.

  2. Goncharuk, A.V., Fadeev, V.A., and Kadach, M.V., Seamless pipes manufacturing process improvement using mandreling, Solid State Phenom., 2021, vol. 316, pp. 402–407. https://doi.org/10.4028/www.scientific.net/SSP.316.402

  3. Orlov, D.A., Gamin, Yu.V., Goncharuk, A.V., and Romantscev, B.A., Development and investigation of piercing process using cooled guide shoes, Metallurgist, 2021, no. 65, pp. 389–399. https://doi.org/10.1007/s11015-021-01168-z

  4. Mashekov, S.A., Absadykov, B.N., and Mashekova, A.S., Investigation of the kinematics of rolling ribs and pipes on a continuous radial-shifting mill of a new construction, News Natl. Acad. Sci. Rep. Kaz. Ser. Geol. Tech. Sci., 2018, vol. 3, no. 430, pp. 98–109.

    Google Scholar 

  5. Wang, F.X., Du, F.S., and Yu, H., The thermal-mechanical coupled FEM analysis on 3-roll continual tube rolling PQF deformation process, Adv. Mater. Res., 2011, vols. 189–193, pp. 1670–1674. https://doi.org/10.4028/www.scientific.net/AMR.189-193.1670

  6. Vavilkin, N.M. and Grachev, M.V., Features of thermal state of rolling mill short mandrels, Kuznechno-Shtampovochnoe Proizvod.–Obrab. Mater. Davleniem, 2019, no. 10, pp. 12–16.

  7. Yin, Y.D., Li, S.Z., Kang, Y.L., and Hu, L.W., Analysis of metal flow and deformation features during continuous tube rolling process with mandrel mill, Adv. Mater. Res., 2011, vols. 189–193, pp. 2376–2381. https://doi.org/10.4028/www.scientific.net/AMR.189-193.2376

  8. Gamin, Yu.V., Romantsev, B.A., Pashkov, A.N., Patrin, P.V., Bystrov, I.A., Fomin, A.V., and Kadach, M.V., Obtaining hollow semifinished products based on copper alloys for electrical purposes by means of screw rolling, Russ. J. Non-Ferrous Met., 2020, vol. 61, no. 2, pp. 162–171.  https://doi.org/10.3103/S1067821220020054

    Article  Google Scholar 

  9. Goncharuk, A.V., Gamin, Yu.V., Sharafanenko, I.K., and Aleshchenko, A.S., Piercing of a billet in a mill with guide disks, Russ. Metall., 2020, no. 13, pp. 1637–1642.  https://doi.org/10.1134/S003602952013011X

  10. Amirgaliyev, Y., Wojcik, W., Ospanova, T., and Jetpisov, K., 3D modelling of distribution of temperature field in the rolling mill, J. Ecol. Eng., 2017, vol. 18, no. 6, pp. 1–7.  https://doi.org/10.12911/22998993/76895

    Article  Google Scholar 

  11. Orlov, D.A., Goncharuk, A.V., Kobelev, O.A., Komarnitskaya, O.G., and Bunits, N.S., Analysis of pipe piercing on PRP 70-270 with FEM modeling, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2020, vol. 63, no. 10, pp. 848–855.  https://doi.org/10.17073/0368-0797-2020-10-848-855

    Article  CAS  Google Scholar 

  12. Akopyan, T.K., Gamin, Y.V., Galkin, S.P., Prosviryakov, A.S., Aleshchenko, A.S., Noshin, M.A., Koshmin, A.N., and Fomin, A.V., Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties, Mater. Sci. Eng., A, 2020, vol. 785, p. 139424. https://doi.org/10.1016/j.msea.2020.139424

    Article  CAS  Google Scholar 

  13. Cao, Q., Hua, L., and Qian, D., Finite element analysis of deformation characteristics in cold helical rolling of bearing steel-balls, J. Central South Univ., 2015, vol. 22, no. 4, pp. 1175–1183.  https://doi.org/10.1007/s11771-015-2631-6

    Article  CAS  Google Scholar 

  14. Rout, M., Pal, S.K., and Singh, S.B., Finite element simulation of a cross rolling process, J. Manuf. Process., 2016, vol. 24, part 1, pp. 283–292.  https://doi.org/10.1016/j.jmapro.2016.09.012

    Article  Google Scholar 

  15. Deng, G.Y., Zhu, H.T., Tieu, A.K., Zhu, Q., Su, L.H., Reid, M., Wei, P.T., Zhang, L., Wang, H., Zhang, J., Li, J.T., Ta, T.D., and Wu, Q., Numerical evaluation of a high speed steel work roll during hot strip rolling process, Mater. Sci. Forum, 2017, vol. 904, pp. 55–60. https://doi.org/10.4028/www.scientific.net/MSF.904.55

  16. Gao, J.F., Li, Q., and Zhao, W., Thermal stress analysis for local heating variable cross-section roll forming, Adv. Mater. Res., 2013, vol. 683, pp. 599–603. https://doi.org/10.4028/www.scientific.net/AMR.683.599

  17. Domazet, Ž. and Lukša, F., Influence of rolling temperature on fatigue life of calibrated rolls, Adv. Mater. Res., 2013, vol. 742, pp. 482–487. https://doi.org/10.4028/www.scientific.net/AMR.742.482

  18. Koshmin, A.N., Zinoviev, A.V., Chasnikov, A.Ya., and Grachev, G.N., Investigation of the stress-strain state and microstructure transformation of electrotechnical copper buses in the deformation zone during continuous extrusion, Russ. J. Non-Ferrous Met., 2021, vol. 62, no. 1, pp. 179–189.  https://doi.org/10.3103/S1067821221020085

    Article  Google Scholar 

  19. Fadeev, V. and Kondrushin, A., Special aspects of determining parameters for continuous deformation of pipe billets for the specified pipes size range, Mater. Today: Proc., 2020, vol. 38, pp. 1322–1325.  https://doi.org/10.1016/j.matpr.2020.08.093

    Article  CAS  Google Scholar 

  20. Kalinina, V.V. and Ivanchenko, A.B., Simulation of thermal state of the mandrel of a continuous rolling mill for pipe rolling production, Vestn. Magistratury, 2014, no. 4, pp. 45–52.

  21. Mikheev, M.A. and Mikheeva, I.M., Osnovy teploperedachi. Uchebnoe posobie dlya vuzov (Fundamentals of Heat Transfer. Manual for Universities), Moscow: Bastet, 2010, 3rd ed.

  22. Vavilkin, N.M. and Krasikov, A.B., Research and improvement of operating modes of long mandrels for continuous pipe mills, Chern. Met., 2012, no. 4, pp. 13–17.

  23. Zeng, B., Wu, J., and Zhang, H., Numerical simulation of multi-pass rolling force and temperature field of plate steel during hot rolling, J. Shanghai Jiaotong Univ. (Sci.), 2011, vol. 16, no. 2, pp. 141–144.  https://doi.org/10.1007/s12204-011-1109-4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Vavilkin or A. S. Budnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Bogacheva

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vavilkin, N.M., Budnikov, A.S. Study of Thermal State of Mandrel Bars in a Three-High Rolling Mill. Steel Transl. 52, 278–282 (2022). https://doi.org/10.3103/S0967091222030159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0967091222030159

Keywords:

Navigation