Log in

The in vivo antitumor effect of the apoptin-producing recombinant vaccinia virus strain is associated with blockage of mitotic division of cancer cells

  • Experimental Works
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Vaccinia virus (VACV) possesses a natural oncolytic activity, for the enhancement of which genes encoding various effector molecules, for example, those inducing apoptotic death of tumor cells, are introduced into the virus genome. One such transgene is the gene encoding apoptin protein. The aim of the current work was to study antitumor activity of the apoptin-producing recombinant VACV strain VVdGF-ApoS24/2 in a syngenic murine tumor model. An Ehrlich carcinoma was implanted subcutaneously or intraperitoneally into C57B1 line mice. After tumor development, mice were intratumorally injected with 107 PFU/mouse of VVdGF-ApoS24/2 virus in a single dose, while control mice received 0.9% NaCl solution. Animals were sacrificed at different times after VACV injection. Tumor samples and ascetic fluid cells were fixed in 4% paraformaldehyde and further studied by light microscopy, immunohistochemistry, and electron microscopy. Virus titers in tumor cells were determined by the PFU method. VVdGF-ApoS24/2 VACV strain caused a significant reduction in the volumes of both solid and ascites Ehrlich carcinomas compared to the tumors in the control group of mice, although the virus reproduction rate in the tumor cells was rather low. The antitumor effect of VVdGF-ApoS24/2 could neither be attributed to virus-induced destruction, necrosis, or apoptosis of tumor cells nor to accumulation of the immune-effector cells in the tumors. A decrease in the number of tumor cells undergoing mitosis was observed when examining carcinoma sections, while counting Ki-67 and PCNA positive cells and analysis of their numbers showed that VVdGF-ApoS24/2 strain arrests cell cycle in the S-phase, thereby blocking tumor-cell division and slowing down tumor growth. The obtained results indicate that the insertion of the gene encoding apoptin into the genome of the original L-IVP VACV strain improved the ability of the virus to arrest the cell cycle in Ehrlich carcinoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buijs, P.R.A., Verhagen, J.H.E., van Eijck, C.H.J., van den Hoogen, B.G., and Bernadette, G., Oncolytic viruses: from bench to bedside with a focus on safety, Hum. Vaccines Immunother., 2015, vol. 11, no. 7, pp. 1573–1584.

    Article  Google Scholar 

  2. Zeyaullah, M., Patro, M., Ahmad, I., Ibraheem, K., Sultan, P., Nehal, M., et al., Oncolytic viruses in the treatment of cancer: a review of current strategies, Pathol. Oncol. Res., 2012, vol. 18, no. 4, pp. 771–781.

    Article  PubMed  Google Scholar 

  3. Kochneva, G.V., Sivolobova, G.F., Yudina, K.V., Babkin, I.V., Chumakov, P.M., and Netesov, S.V., Oncolytic poxviruses, Mol. Genet., Microbiol. Virol., 2012, vol. 27, no. 1, pp. 7–15.

    Article  Google Scholar 

  4. Thorne, S.H., Hwang, T.H., and Kirn, D.H., Vaccinia virus and oncolytic virotherapy of cancer, Curr. Opin. Mol. Ther., 2005, vol. 7, no. 4, pp. 359–365.

    PubMed  Google Scholar 

  5. Danen-Van Oorschot, A.A., Fisher, D.F., Grimbergen, J.M., Klein, B., Zhuang, S.M., Falkenburg, J.H., et al., Apoptin induces apoptosis in human transformed and malignant cells but not in normal cells, Proc. Natl. Acad. Sci. U. S. A., 1997, vol. 94, pp. 5843–5847.

    Article  CAS  PubMed  Google Scholar 

  6. Kochneva, G.V., Babkina, I.N., Lupan, T.A., Grazhdantseva, A.A., Iudin, P.V., Sivolobova, G.F., et al., Apoptin enhances the oncolytic activity of vaccinia virus in vitro, Mol. Biol. (Moscow), 2013, vol. 47, no. 5, pp. 733–742.

    Article  CAS  Google Scholar 

  7. Kochneva, G., Zonov, E., Grazhdantseva, A., Yunusova, A., Sibolobova, G., Popov, E., et al., Apoptin enhances the oncolytic properties of vaccinia virus and modifies mechanisms of tumor regression, Oncotarget, 2014, vol. 5, no. 22, pp. 11269–11282.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zonov, E., Kochneva, G., Yunusova, A., Grazhdantseva, A., Richter, V., and Ryabchikova, E., Features of the antitumor effect of vaccinia virus Lister strain, Viruses, 2016, vol. 8, no. 1, p. 20.

    Article  PubMed Central  Google Scholar 

  9. Forbes, N.E., Krishnan, R., and Diallo, J., Pharmacological modulation of anti-tumor immunity induced by oncolytic viruses, Front. Oncol., 2014, vol. 4, p. 191.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Seigneurin, D. and Guillaud, P., Ki-67 antigen, a cell cycle and tumor growth marker, Pathol. Biol., 1991, vol. 39, no. 10, pp. 1020–1028.

    CAS  Google Scholar 

  11. Shönenberger, F., Deutzmann, A., Ferrando-May, E., and Merhof, D., Discrimination of cell cycle phases in PCNA-immunolabeled cells, BMC Bioinf., 2015, vol. 16, p. 180.

    Article  Google Scholar 

  12. Zakay-Roness, Z. and Bernkoff, H., Effect of active and ultraviolet-irradiated inactive vaccinia virus on the development of shay leukemia in rats, Cancer Res., 1964, vol. 24, pp. 373–378.

    CAS  PubMed  Google Scholar 

  13. Yu, Z., Li, S., Brader, P., Chen, N., Yu, Y.A., Zhang, Q., et al., Oncolytic vaccinia therapy of squamous cell carcinoma, Mol. Cancer, 2009, vol. 8, p. 45.

    Article  PubMed  PubMed Central  Google Scholar 

  14. He, S., Li, P., Chen, C.H., Bakst, R.L., Chernichenko, N., Yu, Y.A., et al., Effective oncolytic vaccinia therapy for human sarcomas, J. Surg. Res., 2012, vol. 175, no. 2, pp. 53–60.

    Article  Google Scholar 

  15. Breitbach, C.J., Arulanandam, R., de Silva, N., Thorne, S.H., Patt, R., Daneshmand, M., et al., Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans, Cancer Res., 2013, vol. 73, no. 4, pp. 1265–1275.

    Article  CAS  PubMed  Google Scholar 

  16. Lun, X., Chan, J., Zhou, H., Sun, B., Kelly, J.J., Stechishin, O.O., et al., Efficacy and safety/toxicity study of recombinant vaccinia virus JX-594 in two immunocompetent animal models of glioma, Mol. Ther., 2010, vol. 18, no. 11, pp. 1927–1936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adelfinger, M., Bessler, S., Frentzen, A., Cecil, A., Langbein-Laugwitz, J., Gentschev, I., et al., Preclinical testing oncolytic vaccinia virus strain GLV-5b451 expressing an anti-VEGF single-chain antibody for canine cancer therapy, Viruses, 2015, vol. 7, pp. 4075–4092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Parviainen, S., Autio, K., Vähä-Koskela, M., Guse, K., Pesonen, S., Rosol, T.J., et al., Incomplete but infectious vaccinia virions are produced in the absence of oncolysis in feline SCCF1 cells, PLoS One, 2015, vol. 10, no. 3, p. e0120496.

    Article  Google Scholar 

  19. Weibel, S., Raab, V., Yu, Y.A., Worschech, A., Wang, E., Marincola, F.M., et al., Viral-mediated oncolysis is the most critical factor in the late-phase of the tumor regression process upon vaccinia virus infection, BMC Cancer, 2011, vol. 11, p. 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Teodoro, J.G., Heilman, D.W., Parker, A.E., and Green, M.R., The viral protein Apoptin associates with the anaphase-promoting complex to induce G2/M arrest and apoptosis in the absence of p53, Genes Dev., 2004, vol. 18, no. 16, pp. 1952–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Heilman, D.W., Teodoro, J.G., and Green, M.R., Apoptin nucleocytoplasmic shuttling is required for cell type-specific localization, apoptosis, and recruitment of the anaphase-promoting complex/cyclosome to PML bodies, J. Virol., 2006, vol. 80, no. 15, pp. 7535–7545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wirth, K.G., Ricci, R., Giménez-Abián, J.F., Taghybeeglu, S., Kudo, N.R., Jochum, W., et al., Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation, Genes Dev., 2004, vol. 18, no. 1, pp. 88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Ryabchikova.

Additional information

Original Russian Text © E.V. Zonov, G.V. Kochneva, A.V. Tupitsyna, E.I. Ryabchikova, 2016, published in Molekulyarnaya Genetika, Mikrobiologiya i Virusologiya, 2016, No. 4, pp. 154–159.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zonov, E.V., Kochneva, G.V., Tupitsyna, A.V. et al. The in vivo antitumor effect of the apoptin-producing recombinant vaccinia virus strain is associated with blockage of mitotic division of cancer cells. Mol. Genet. Microbiol. Virol. 31, 233–239 (2016). https://doi.org/10.3103/S089141681604008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S089141681604008X

Keywords

Navigation