Log in

Quantitative Analysis of the Spectrum of HD 108564

  • PHYSICS OF STARS AND INTERSTELLAR ENVIRONMENT
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

A quantitative analysis of the spectrum of HD 108564 is performed. It is a star of the main sequence of spectral class K5V, the atmosphere of which is depleted in metals. The high-quality observed HARPS spectra are downloaded from the ESO archive. Abundances of elements in the atmosphere are obtained by fit of observational profiles of the C I lines and selected lines of the C2 molecules, and the O I, Ca I, Si I, Sc II, Cr I, CI, OI, Na I, Mg I, Si I, Ca I, Sc II, Ti I, Ti II, Cr I, Mn I, Fe I, Fe II, Co I, Ni I, Cu I, and Zn I. Abundances are determined iteratively, with a recalculation of the input parameters, which are effective temperature Teff  at a fixed value of gravity logg (or log g for a fixed Teff value). The effect of variations of Teff  or log g, which provide the same abundances of A(Fe I) and A(Fe II), on the abundances of other elements are determined. The obtained results indicate an excess of light elements (C, O, and Si) compared to the group of iron. The absence of the lithium line at 670.8 nm is confirmed with an estimate of A(Li) < –12.5 for the upper limit of lithium abundance in the abundance scale, in which the sum of all abundances is 1.0. The determined radial velocity equal to Vrad = 111.21 km/s is consistent with the known estimates of other researchers. Apparent rotation velocity V sin i = 1.12 ± 0.5 km/s is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. V. Z. Adibekyan, S. G. Sousa, N. C. Santos, et al., “Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. Galactic stellar populations and planets,” Astron. Astrophys. 545, A32 (2012).

    Article  Google Scholar 

  2. C. Aguilera-Gomez, I. Ramirez, and J. Chaname, “Lithium abundance patterns of late- F stars: An in-depth analysis of the Lithium desert,” Astron. Astrophys. 614, A55 (2018).

    Article  ADS  Google Scholar 

  3. E. Anders and N. Grevesse, “Abundances of the elements: Meteoritic and solar,” Geochim. Cosmochim. Acta 53, 197—214 (1989).

    Article  ADS  Google Scholar 

  4. F. Arenou, X. Luri, C. Babusiaux, et al., “Gaia Data Release 2. Catalogue validation,” Astron. Astrophys. 616, A17 (2018).

    Article  Google Scholar 

  5. A. Arentsen, P. Prugniel, A. Gonneau, et al., “Stellar atmospheric parameters for 754 spectra from the X-shooter spectral library,” Astron. Astrophys. 627, A138 (2019).

    Article  Google Scholar 

  6. J. C. Bond, D. P. O’Brien, and D. S. Lauretta, “The compositional diversity of extrasolar terrestrial planets. I. In situ simulations,” Astrophys. J. 715, 1050—1070 (2010).

    Article  ADS  Google Scholar 

  7. L. Carigi, M. Peimbert, G. Esteban, and J. García-Rojas, “Carbon, nitrogen, and oxygen galactic gradients: A solution to the carbon enrichment problem,” Astrophys. J. 623, 213—224 (2005).

    Article  ADS  Google Scholar 

  8. J. Christensen-Dalsgaard, D. O. Gough, and M. J. Thompson, “The depth of the solar convection zone,” Astrophys. J. 378, 413 (1991).

    Article  ADS  Google Scholar 

  9. A. R. Costa Silva, E. Delgado Mena, and M. Tsantaki, “Chemical abundances of 1111 FGK stars from the HARPS-GTO planet search sample. III. Sulfur,” Astron. Astrophys. 634, A136 (2020).

    Article  ADS  Google Scholar 

  10. M. Cretignier, J. Francfort, X. Dumusque, R. Allart, and F. Pepe, “RASSINE: Interactive tool for normalising stellar spectra. I. Description and performance of the code,” Astron. Astrophys. 640, A42 (2020).

    Article  ADS  Google Scholar 

  11. E. Delgado Mena, V. Adibekyan, N. C. Santos, et al., “Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. IV. Carbon and C/O ratios for Galactic stellar populations and planet hosts,” Astron. Astrophys. 655, A99 (2021). ar**v 2109.04844.

  12. E. Delgado Mena, A. Moya, V. Adibekyan, et al., “Abundance to age ratios in the HARPS-GTO sample with Gaia DR2. Chemical clocks for a range of [Fe/H],” Astron. Astrophys. 624, A78 (2019).

    Article  Google Scholar 

  13. C. P. Deliyannis and M. H. Pinsonneault, “110 Herculis: A possible prototype for simultaneous lithium and beryllium depletion, and implications for stellar interiors,” Astrophys. J. 488, 836–840 (1997).

    Article  ADS  Google Scholar 

  14. C. Dorn, A. Khan, K. Heng, et al., “Can we constrain the interior structure of rocky exoplanets from mass and radius measurements?,” Astron. Astrophys. 577, A83 (2015).

    Article  Google Scholar 

  15. L. A. dos Santos, J. Meléndez, J. D. do Nascimento, et al., “The solar twin planet search. IV. The Sun as a typical rotator and evidence for a new rotational braking law for Sun-like stars,” Astron. Astrophys. 592, A156 (2016).

  16. J. Farihi, A. R. Arendt, H. S. Machado, and L. J. Whitehouse, “Evidence for halo kinematics among cool carbon-rich dwarfs,” Mon. Not. R. Astron. Soc. 477, 3801—3806 (2018).

    Article  ADS  Google Scholar 

  17. Gaia Collaboration, VizieR Online Data Catalog: Gaia DR2 (Gaia Collaboration, 2018); VizieR Online Data Catalog, 1/345.

  18. A. Gonneau, M. Lyubenova, A. Langon, et al., “The X-shooter Spectral Library (XSL): Data release,” Astron. Astrophys. 634, A133 (2020).

    Article  Google Scholar 

  19. D. F. Gray, The Observation and Analysis of Stellar Photospheres (Wiley, New York, 1976).

    Google Scholar 

  20. E. A. Gurtovenko, and R. I. Kostyk, Fraunhofer Spectrum and a System of Solar Oscillator Strengths (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  21. O. Ivanyuk, Y. V. Pavlenko, J. S. Jenkins, and H. R. A. Jones, “Accuracies of abundance determinations in large spectroscopic surveys,” Presented at ESO Conf. The Galactic Bulge at the Crossroads, Pucon, Chile, Dec. 10–14, 2018.

  22. O. M. Ivanyuk, J. S. Jenkins, Y. V. Pavlenko, H. R. A. Jones, and D. J. Pinfield, “The metal-rich abundance pattern — Spectroscopic properties and abundances for 107 main-sequence stars,” Mon. Not. R. Astron. Soc. 468, 4151–4169 (2017).

    Article  ADS  Google Scholar 

  23. C. Kobayashi, A. I. Karakas, and M. Lugaro, “The origin of elements from carbon to uranium,” Astrophys. J. 900, 179 (2020).

    Article  ADS  Google Scholar 

  24. M. Koleva, P. Prugniel, A. Bouchard, and Y. Wu, “ULySS: A full spectrum fitting package,” Astron. Astrophys. 501, 1269–1279 (2009).

    Article  ADS  Google Scholar 

  25. R. L. Kurucz, L. Furenlid, J. Brault, and L. Testerman, Solar Flux Atlas from 296 to 1300 nm (1984).

  26. R. E. Luck, “Abundances in the local region. III. Southern F, G, and K dwarfs,” Astron. J. 155, 111 (2018).

    Article  ADS  Google Scholar 

  27. L. Mashonkina, T. Gehren, J. R. Shi, A. J. Korn, and F. Grupp, “A non-LTE study of neutral and singly-ionized iron line spectra in ID models of the Sun and selected late-type stars,” Astron. Astrophys. 528, A87 (2011).

    Article  Google Scholar 

  28. G. Michaud, “The Lithium abundance gap in the Hyades F stars: The signature of diffusion,” Astrophys. J. 302, 650 (1986).

    Article  ADS  Google Scholar 

  29. J. Montalbán, and E. Schatzman, “Mixing by internal waves. III. Li and Be abundance dependence on spectral type, age and rotation,” Astron. Astrophys. 354, 943–959 (2000).

    ADS  Google Scholar 

  30. Y. V. Pavlenko, “Model atmospheres of red giants,” Astron. Rep. 47, 59–67 (2003).

    Article  ADS  Google Scholar 

  31. Y. V. Pavlenko, “Determination of abundances in the atmospheres of F-, G-, and K-dwarfs,” Kinematics Phys. Celestial Bodies 33, 55–62 (2017).

    Article  ADS  Google Scholar 

  32. Y. V. Pavlenko, J. S. Jenkins, O. M. Ivanyuk, et al., “A detailed study of lithium in 107 CHEPS dwarf stars,” Astron. Astrophys. 611, A27 (2018).

    Article  Google Scholar 

  33. Y. V. Pavlenko, V. M. Kaminsky, J. S. Jenkins, et al., “Masses, oxygen, and carbon abundances in CHEPS dwarf stars,” Astron. Astrophys. 621, A112 (2019).

    Article  Google Scholar 

  34. M. H. Pinsonneault, C. P. Deliyannis, and P. Demarque, “Evolutionary models of halo stars with rotation. II. Effects of metallicity on Lithium depletion, and possible implications for the primordial Lithium abundance,” Astrophys. J., Suppl. Ser. 78, 179 (1992).

    Article  ADS  Google Scholar 

  35. I. Ramírez, and J. Meléndez, “The effective temperature scale of FGK stars. I. Determination of temperatures and angular diameters with the infrared flux method,” Astrophys. J. 626, 446–464 (2005).

    Article  ADS  Google Scholar 

  36. I. Ramírez, J. Meléndez, J. Bean, et al., “The solar twin planet search. I. Fundamental parameters of the stellar sample,” Astron. Astrophys. 572, A48 (2014).

    Article  Google Scholar 

  37. T. Ryabchikova, N. Piskunov, R. L. Kurucz, et al. A, “A major upgrade of the VALD database,” Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  38. P. Sánchez-Blázquez, R. F. Peletier, J. Jiménez-Vicente, et al., “Medium-resolution Isaac Newton Telescope library of empirical spectra,” Mon. Not. R. Astron. Soc. 371, 703–718 (2006).

    Article  ADS  Google Scholar 

  39. A. M. Serenelli, S. Basu, J. W. Ferguson, and M. Asplund, “New solar composition: The problem with solar models revisited,” Astrophys. J., Lett. 705, L123–L127 (2009).

    Article  ADS  Google Scholar 

  40. T. Sitnova, G. Zhao, L. Mashonkina, et al., “Systematic Non-LTE study of the –2.6 < Fe/H < 0.2 F and G dwarfs in the solar neighborhood. I. Stellar atmosphere parameters,” Astrophys. J. 808, 148 (2015).

    Article  ADS  Google Scholar 

  41. C. Soubiran, G. Jasniewicz, L. Chemin, et al., “Gaia Data Release 2. The catalogue of radial velocity standard stars,” Astron. Astrophys. 616, A7 (2018).

    Article  Google Scholar 

  42. S. G. Sousa, N. C. Santos, G. Israelian, et al., “Spectroscopic characterization of a sample of metal-poor solar-type stars from the HARPS planet search program. Precise spectroscopic parameters and mass estimation,” Astron. Astrophys. 526, A99 (2011).

    Article  Google Scholar 

  43. K. Strassmeier, A. Washuettl, T. Granzer, M. Scheck, and M. Weber, “The Vienna-KPNO search for Doppler-imaging candidate stars. I. A catalog of stellar-activity indicators for 1058 late-type Hipparcos stars,” Astron. Astrophys., Suppl. Ser. 142, 275–311 (2000).

    Article  ADS  Google Scholar 

  44. K. G. Strassmeier, M. Weber, T. Granzer, and S. Järvinen, “Rotation, activity, and lithium abundance in cool binary stars,” Astron. Nachr. 333, 663 (2012).

    Article  ADS  Google Scholar 

  45. F. J. Swenson, and J. Faulkner, “Lithium dilution through main-sequence mass loss,” Astrophys. J. 395, 654 (1992).

    Article  ADS  Google Scholar 

  46. M. Wenger, F. Ochsenbein, D. Egret, et al., “The SIMBAD astronomical database. The CDS reference database for astronomical objects,” Astron. Astrophys., Suppl. Ser. 143, 9–22 (2000).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the budget subsidy of the scientific research topic (registration number 14006632) from the Section of Physics and Astronomy of the National Academy of Sciences of Ukraine. Data from the SIMBAD database (Strasbourg, France) and the VALD3 database (Uppsala University and the University of Vienna) were used in the study. The study was performed on the basis of the analysis of observations collected by the European Organization for Astronomical Research in the Southern Hemisphere within ESO Programs 072.C-0488 (E) and 082.C-0212(B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Pavlenko.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlenko, Y.V. Quantitative Analysis of the Spectrum of HD 108564. Kinemat. Phys. Celest. Bodies 38, 316–327 (2022). https://doi.org/10.3103/S0884591322060058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591322060058

Keywords:

Navigation