Log in

Asymmetry of Lines in the Spectra of the Sun and Solar-Type Stars

  • SOLAR PHYSICS
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The asymmetry of the Fe I and Fe II lines in the solar flux spectra has been analyzed using three FTS atlases and the HARPS atlas; it was also analyzed in the spectra of 13 stars using observations on the HARPS spectrograph. Individual line bisectors of each star have been averaged to reduce observation noise. The obtained average bisectors in the stellar spectra are more or less similar to the C-shape well known for the Sun. In stars with rotation velocities greater than 5 km/s, the shape of the bisectors is closer to the slash symbol (/). The curvature and span of the bisectors increase with the temperature of the star. Our results confirm the known facts about the strong influence of rotation velocity on the span and shape of bisectors. The average convective velocity was determined based on the span of the average bisector, which shows the largest difference between the velocity of cold falling and hot rising convective flows of matter. It is equal to –420 m/s for the Sun as a star. In solar-type stars, it grows from –150 to –700 m/s with an effective temperature of 4800 to 6200 K, respectively. For the stars with greater surface gravity and greater metallicity, the average convective velocity decreases. It also decreases with star age and correlates with the velocity of micro- and macroturbulent movements. The results of the solar flux analysis showed that absolute wavelength scales in the FTS atlases coincide to approximately –10 m/s, except for the atlas of Hinkle et al., the scale of which is shifted and depends on the wavelength. In the range from 450 to 650 nm, the scale shift of this atlas varies from –100 to –330 m/s, respectively, and it equals –240 m/s on average. The resulting average star bisectors contain information about the fields of convective velocities and may be useful for hydrodynamic modeling of stellar atmospheres in order to study the characteristic features of surface convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. C. Allende Prieto, M. Asplund, R. J. García López, and D. L. Lambert, “Signatures of convection in the spectrum of Procyon: Fundamental parameters and iron abundance,” Astrophys. J. 567, 544–565 (2002).

    Article  ADS  Google Scholar 

  2. C. Allende Prieto and R. J. García López, “Fe I line shifts in the optical spectrum of the Sun,” Astron. Astrophys., Suppl. Ser. 129, 41–44 (1998).

    Article  ADS  Google Scholar 

  3. C. Allende Prieto, R. J. García López, D. L. Lambert, and B. Gustafsson, “Spectroscopic observations of convective patterns in the atmospheres of metal-poor stars,” Astrophys. J. 526, 991–1000 (1999).

    Article  ADS  Google Scholar 

  4. C. Allende Prieto, L. Koesterke, H.-G. Ludwig, B. Freytag, and E. Caffau, “Convective line shifts for the GAIA RVS from the CIFIST 3D model atmosphere grid,” Astron. Astrophys. 550, A103 (2013).

    Article  ADS  Google Scholar 

  5. M. Asplund, A. Nordlund, R. Trampedach, C. Allende Prieto, and R. F. Stein, “Line formation in solar granulation. I. Fe line shapes, shifts and asymmetries,” Astron. Astrophys. 359, 729–742 (2000).

    ADS  Google Scholar 

  6. I. N. Atroshchenko and A. S. Gadun, “Three-dimensional hydrodynamic models of solar granulation and their application to a spectral analysis problem,” Astron. Astrophys. 291, 635–656 (1994).

    ADS  Google Scholar 

  7. H. Balthasar, “Asymmetries and wavelengths of solar spectral lines and the solar rotation determined from Fourier-transform spectra,” Sol. Phys. 93, 219–241 (1984).

    Article  ADS  Google Scholar 

  8. O. A. Baran and M. I. Stodilka, “Convection structure in the solar photosphere at granulation and mesogranulation scales,” Kinematics Phys. Celestial Bodies 31, 65–72 (2015).

    Article  ADS  Google Scholar 

  9. B. Beeck, R. H. Cameron, A. Reiners, and M. Schussler, “Three-dimensional simulations of near-surface convection in main-sequence stars. II. Properties of granulation and spectral lines,” Astron. Astrophys. 558, A49 (2013).

    Article  ADS  Google Scholar 

  10. P. N. Brandt, A. S. Gadun, and V. A. Sheminova, “Absolute shifts of Fe I and Fe II lines in solar active regions (disk center),” Kinematics Phys. Celestial Bodies 13 (5), 65–74 (1997).

    ADS  Google Scholar 

  11. D. Dravins, “Stellar granulation. II. Stellar photospheric line asymmetries,” Astron. Astrophys. 172, 211–224 (1987).

    ADS  Google Scholar 

  12. D. Dravins, “Stellar surface convection, line asymmetries, and wave length shifts,” in Precise Stellar Radial Velocities (Proc. 170th IAU Colloquium, Victoria, B.C., Canada, June 21–26, 1998), Ed. by J. B. Hearnshaw and C. D. Scarfe (Astronomical Society of the Pacific, San Francisco, 1999), in Ser.: ASP Conference Series, Vol. 185, pp. 268–276.

  13. D. Dravins, “Ultimate information content in solar and stellar spectra. Photospheric line asymmetries and wave length shifts,” Astron. Astrophys. 492, 199–213 (2008).

    Article  ADS  Google Scholar 

  14. D. Dravins, L. Lindegren, and A. Nordlund, “Solar granulation — Influence of convection on spectralline asymmetries and wavelength shifts,” Astron. Astrophys. 96, 345–364 (1981).

    ADS  Google Scholar 

  15. D. Dravins and A. Nordlund, “Stellar granulation. V. Synthetic spectrallines in disk-integrated starlight,” Astron. Astrophys. 228, 203–217 (1990).

    ADS  Google Scholar 

  16. J. M. Fontenla, E. H. Avrett, and R. Loeser, “Energy balance in the solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion,” Astrophys. J. 406, 319–345 (1993).

    Article  ADS  Google Scholar 

  17. A. S. Gadun and V. A. Sheminova, “SPANSAT: The program for LTE calculations of absorption line profiles in stellar atmospheres,” Preprint No. ITF-88-87P (Inst. for Theoretical Physics of the Ukrainian SSR Acad. Sci., Kiev, 1988).

    Google Scholar 

  18. D. F. Gray, “Observations of spectral line asymmetries and convective velocities in F, G and K stars,” Astrophys. J. 255, 200–209 (1982).

    Article  ADS  Google Scholar 

  19. D. F. Gray, “Shapes of spectral line bisectors for cool stars,” Publ. Astron. Soc. Pac. 117, 711–720 (2005).

    Article  ADS  Google Scholar 

  20. D. F. Gray, “Solar-flux line-broadening analysis,” Astrophys. J. 857, 139 (2018).

    Article  ADS  Google Scholar 

  21. D. F. Gray and T. Nagel, “The granulation boundary in the H-R diagram,” Astrophys. J. 341, 421–426 (1989).

    Article  ADS  Google Scholar 

  22. D. F. Gray and C. G. Toner, “Inferred properties of stellar granulation,” Astrophys. J. 97, 543–550 (1985).

    ADS  Google Scholar 

  23. D. F. Gray and C. G. Toner, “The remarkable spectral line asymmetries of F and G Ib supergiant stars,” Publ. Astron. Soc. Pacific. 98, 499–503 (1986).

    Article  ADS  Google Scholar 

  24. E. A. Gurtovenko and V. A. Sheminova, “Formation depths of Fraunhofer lines” (2015). ar**v 1505.00975.

  25. D. Hamilton and J. B. Lester, “A technique for the study of stellar convection: The visible solar flux spectrum,” Publ. Astron. Soc. Pacific. 763, 1132–1143 (1999).

    Article  ADS  Google Scholar 

  26. K. Hinkle and L. Wallace, “The spectrum of Arcturus from the infrared through the ultraviolet,” in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, Ed. by T. G. Barnes and F. N. Bash (Astronomical Society of the Pacific, San Francisco, 2005), in Ser.: ASP Conference Series, Vol. 336.

  27. O. M. Ivanyuk, J. S. Jenkins, Ya. V. Pavlenko, et al., “The metal-rich abudance pattern — Spectroscopic properties and abundances for 107 main-sequence stars,” Mon. Not. R. Astron. Soc. 468, 4151–4169 (2017).

    Article  ADS  Google Scholar 

  28. J. S. Jenkins, H. R. A. Jones, and K. Gozdziewski, “First results from the Calan–Hertfordshire Extrasolar Planet Search: Exoplanets and the discovery of an eccentric brown dwarf in the desert,” Mon. Not. R. Astron. Soc. 398, 911–917 (2009).

    Article  ADS  Google Scholar 

  29. R. I. Kostik and T. V. Orlova, “On the asymmetry of selected Fraunhofer lines,” Sol. Phys. 53, 353–358 (1977).

    Article  ADS  Google Scholar 

  30. R. I. Kostyk and N. G. Shchukina, “Fine structure of convective motions in the solar photosphere: Observations and theory,” Astron. Rep. 48, 769–780 (2004).

    Article  ADS  Google Scholar 

  31. R. L. Kurucz, I. Furenlid, J. Brault, and L. Testerman, “Solar flux atlas from 296 to 1300 nm,” in National Solar Observatory Atlas (National Solar Observatory, Sunspot, N.M., 1984).

    Google Scholar 

  32. W. C. Livingston, “Magnetic fields and convection — New observations,” in Solar and Stellar Magnetic Fields: Origins and Coronal Effects (Proc. Symp., Zurich, Switzerland, 1983) (Springer-Verlag, Dordrecht, 1983), pp. 149–152.

  33. P. Molaro, M. Esposito, S. Monai, G. Lo Curto, et al., “A frequency comb calibrated solar atlas,” Astron. Astrophys. 560, A61 (2013).

    Article  Google Scholar 

  34. G. Nave, S. Johansson, R. C. M. Learner, A. P. Thorne, and J. W. Brault, “A new multiplet table for Fe I,” Astrophys. J., Suppl. 94, 221 (1994).

    Article  ADS  Google Scholar 

  35. H. Neckel, “Announcement spectral atlas of solar absolute disk-averaged and disk-center intensity from 3290 to 12510 Å (Brault and Neckel, 1987) now available from Hamburg observatory anonymous FTP site,” Sol. Phys. 184, 421–422 (1999).

    Article  ADS  Google Scholar 

  36. Y. V. Pavlenko, B. M. Kaminsky, J. S. Jenkins, O. M. Ivanyuk, H. R. A. Jones, and Y. P. Lyubchik, “Masses, oxygen, and carbon abundances in CHEPS dwarf stars,” Astron. Astrophys. 621, A112 (2019).

    Article  ADS  Google Scholar 

  37. C. Quintero Noda, H. Uitenbroek, M. Carlsson, D. Orozco Suárez, Y. Katsukawa, et al., “Study of the polarization produced by the Zeeman effect in the solar Mg I b lines,” Mon. Not. R. Astron. Soc. 481, 5675–5686 (2018).

    Article  ADS  Google Scholar 

  38. I. Ramirez, C. Allende Prieto, L. Koesterke, D. L. Lambert, and M. Asplund, “Granulation in K-type dwarf stars. II. Hydro dynamic simulations and 3D spectrum synthesis,” Astron. Astrophys. 501, 1087–1101 (2009).

    Article  ADS  Google Scholar 

  39. I. Ramirez, C. Allende Prieto, and D. L. Lambert, “Granulation in K-type dwarf stars. I. Spectroscopic observations,” Astron. Astrophys. 492, 841–855 (2008).

    Article  ADS  Google Scholar 

  40. A. Reiners, N. Mrotzek, U. Lemke, J. Hinrichs, and K. Reinsch, “The IAG solar flux atlas: Accurate wavelengths and absolute convective blueshift in standard solar spectra,” Astron. Astrophys. 587, A65 (2016).

    Article  ADS  Google Scholar 

  41. R. J. Rutten, J. Leenaarts, L. H. M. Rouppe van der Voort, A. G. de Wijn, M. Carlsson, and V. Hansteen, “Quiet-Sun imaging asymmetries in Na I D1 compared with other strong Fraunhofer lines,” Astron. Astrophys. 531, A17 (2011).

    Article  ADS  Google Scholar 

  42. V. A. Sheminova, “Turbulence and rotation in solar-type stars,” Kinematics Phys. Celestial Bodies 35, 129–142 (2019).

    Article  ADS  Google Scholar 

  43. V. A. Sheminova and A. S. Gadun, “Convective shifts of iron lines in the solar photosphere,” Kinematics Phys. Celestial Bodies 18, 12–21 (2002).

    Google Scholar 

  44. L. Wallace, K. H. Hinkle, W. C. Livingston, and S. P. Davis, “An optical and near-infrared (2958–9250 Å) solar flux atlas,” Astrophys. J., Suppl. Ser. 195, 6 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am sincerely grateful to Ya. Pavlenko and A. Ivanyuk for providing the observed spectra of stars and would also like to thank the reviewer for important remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Sheminova.

Additional information

Translated by M. Chubarova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheminova, V.A. Asymmetry of Lines in the Spectra of the Sun and Solar-Type Stars. Kinemat. Phys. Celest. Bodies 36, 291–305 (2020). https://doi.org/10.3103/S0884591320060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320060057

Keywords:

Navigation