Log in

Electromagnetic processes in silver isotopes

  • Nuclear and Particle Physics (Review)
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

Peculiarities of electromagnetic interactions in silver isotopes are considered. Excited states of Ag isotopes are studied as a function of the mass number A = 95–117. Low-lying excited states reveal clear features that are specific for rotational spectra for the energies E < 4–5 MeV. In the energy domain above the nucleon separation threshold of 5–10 MeV, single-particle excited states overlap and produce a continuous spectrum. For energies E = 10–35 MeV, excitation of giant dipole resonance plays the most important role in Ag isotopes. Experimental data on the cross sections of photonuclear reactions in Ag isotopes are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Wang, G. Audi, A. H. Wapstra, et al., Chin. Phys. C 36, 1603 (2012).

    Article  Google Scholar 

  2. G. Audi, F. G. Kondev, M. Wang, et al., Chin. Phys. C 36, 1157 (2012).

    Article  Google Scholar 

  3. I. Berkes, B. Hlimi, G. Marest, et al., Phys. Rev. C 30, 2026 (1984).

    Article  ADS  Google Scholar 

  4. I. Berkes, O. El Hajjaji, B. Hlimi, et al., Phys. Rev. C 33, 390(R) (1986).

    Article  ADS  Google Scholar 

  5. M. J. Throop, I. Hall, I. M. Naqib, et al., Phys. Lett. B 41, 585 (1972).

    Article  ADS  Google Scholar 

  6. K. Dorr, H. J. Stockmann, B. Bader, et al., Hyperfine Interact. 10, 727 (1981).

    Article  ADS  Google Scholar 

  7. M. Goeppert Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (John Wiley & Sons, 1955; Nauka, Moscow, 1958).

    MATH  Google Scholar 

  8. R. Popli, J. A. Grau, S. I. Popik, et al., Phys. Rev. C 20, 1350 (1979).

    Article  ADS  Google Scholar 

  9. S. G. Nilsson, K. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 29, 1 (1955).

    Google Scholar 

  10. V. Paar, Nucl. Phys. A 211, 29 (1973).

    Article  ADS  Google Scholar 

  11. K. Heyde and V. Paar, Phys. Lett. B 179, 1 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Doring, H. Grawe, K. Schmidt, et al., Phys. Rev. C 68, 034306 (2003).

    Article  ADS  Google Scholar 

  13. N. Marginean, D. Bucurescu, C. Rossi Alvarez, et al., Phys. Rev. C 67, 061301 (2003).

    Article  ADS  Google Scholar 

  14. M. Lipoglavsek, M. Vencelj, C. Baktash, et al., Phys. Rev. C 72, 061304 (2005).

    Article  ADS  Google Scholar 

  15. D. Sohler, Zs. Dombradi, J. Blomqvist, et al., Eur. Phys. J. A 16, 171 (2003).

    Article  ADS  Google Scholar 

  16. A. Bohr and B. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations (World Sci., 1998).

    Google Scholar 

  17. S. Frauendorf, Nucl. Phys. A 557, 259 (1993).

    Article  ADS  Google Scholar 

  18. S. Frauendorf and J. Meng, Nucl. Phys. A 617, 131 (1997).

    Article  ADS  Google Scholar 

  19. S. Frauendorf, Rev. Mod. Phys. 73, 463 (2001).

    Article  ADS  Google Scholar 

  20. D. Sohler, J. Timar, Zs. Dombradi, et al., Nucl. Phys. A 733, 37 (2004).

    Article  ADS  Google Scholar 

  21. J. Treherne, J. Genevey, R. Beraud, et al., Nucl. Phys. A 342, 357 (1980).

    Article  ADS  Google Scholar 

  22. D. Jerrestam, W. Klamra, J. Gizon, et al., Nucl. Phys. A 579, 256 (1994).

    Article  ADS  Google Scholar 

  23. D. Jerrestam, W. Klamra, J. Gizon, et al., Nucl. Phys. A 577, 786 (1994).

    Article  ADS  Google Scholar 

  24. K. R. Pohl, P. H. Regan, J. E. Bush, et al., Phys. Rev. C 53, 2682 (1996).

    Article  ADS  Google Scholar 

  25. J. K. Hwang, A. V. Ramayya, J. H. Hamilton, et al., Phys. Rev. C 65, 054314 (2002).

    Article  ADS  Google Scholar 

  26. B. Zhang et al., Chin. Phys. C 35, 1009 (2011).

    Article  ADS  Google Scholar 

  27. B. Qi, H. Jia, N. B. Zhang, et al., Phys. Rev. C 88, 027302 (2013).

    Article  ADS  Google Scholar 

  28. J. Timar, T. Koike, N. Pientralla, et al., Phys. Rev. C 76, 024307 (2007).

    Article  ADS  Google Scholar 

  29. S. Zeghib, F. A. Rickey, and P. C. Simms, Phys. Rev. C 34, 1451 (1986).

    Article  ADS  Google Scholar 

  30. J. Sethi, R. Palit, J. J. Carroll, et al., J. Phys. G 43, 015103 (2016).

    Article  ADS  Google Scholar 

  31. H. Bethe, Rev. Mod. Phys. 9, 69 (1937).

    Article  ADS  Google Scholar 

  32. A. Bohr and B. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion (World Sci., 1998).

    Google Scholar 

  33. J. M. Greiner and W. Eisenberg, Excitation Mechanisms of the Nucleus: Electromagnetic and Weak Interactions (North-Holland, 1970; Atomizdat, Moscow, 1973).

    Google Scholar 

  34. M. Goldhaber and E. Teller, Phys. Rev. 74, 1046 (1948).

    Article  ADS  Google Scholar 

  35. K. Okamoto, Phys. Rev. 37, 110 (1958).

    Google Scholar 

  36. J. P. Elliot and B. H. Flowers, Proc. R. Soc. London, Ser. A 242, 57 (1957).

    Article  ADS  Google Scholar 

  37. G. E. Brown and M. Bolsterli, Phys. Rev. Lett. 3, 472 (1959).

    Article  ADS  Google Scholar 

  38. V. V. Balashov, V. G. Shevchenko, and N. P. Yudin, J. Exp. Theor. Phys. 14, 1371 (1961).

    Google Scholar 

  39. M. Danos, Nucl. Phys. 5, 23 (1958).

    Article  Google Scholar 

  40. B. S. Ishkhanov, I. M. Kapitonov, E. V. Lazutin, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 33, 2074 (1969).

    Google Scholar 

  41. A. N. Tikhonov, Dokl. Akad. Nauk SSSR 151, 501 (1963).

    MathSciNet  Google Scholar 

  42. A. N. Tikhonov, V. G. Shevchenko, V. Ya. Galkin, et al., Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 2, 208 (1970).

    Google Scholar 

  43. O. V. Bogdankevich, B. I. Goryachev, and V. A. Zapevalov, J. Exp. Theor. Phys. 15, 1044 (1962).

    Google Scholar 

  44. A. S. Penfold and J. E. Leiss, Phys. Rev. 95, 637 (1954).

    Google Scholar 

  45. A. S. Penfold and J. E. Leiss, Phys. Rev. 114, 1332 (1959).

    Article  ADS  Google Scholar 

  46. B. L. Berman, R. L. Bramblett, J. T. Caldwell, et al., Phys. Rev. 177, 1745 (1969).

    Article  ADS  Google Scholar 

  47. V. V. Varlamov, B. S. Ishkhanov, and I. M. Kapitonov, Photonuclear Reactions. Current State of Experimental Research (Univ. Kniga, Moscow, 2010) [in Russian].

    Google Scholar 

  48. A. J. Koning, S. Hilaire, and M. C. Duijvestijn, in Proc. Int. Conf. on Nuclear Data for Science and Technology, Nice, France, 2007.

    Google Scholar 

  49. N. Mutsuro, Y. Ohnuki, K. Sato, and M. Kimura, J. Phys. Soc. Jpn. 14, 1649 (1959).

    Article  ADS  Google Scholar 

  50. V. S. Bohinyuk, A. P. Osipenko, A. M. Parlag, et al., Nauchn. Vestn. Uzhgorod. Univ., Ser. Fiz. 11, 56 (2002).

    Google Scholar 

  51. T. Belgya, O. Bersillon, R. Cappote, et al., IAEA-TECDOC-1506.

  52. D. Filipescu, A. Anzalone, D. L. Balabanski, et al., Eur. Phys. J. A 51, 185 (2015).

    Article  ADS  Google Scholar 

  53. H. Utsunomiya, S. Hashimoto, and S. Miyamoto, Nucl. Phys. News 25 (3), 25 (2015).

    Article  Google Scholar 

  54. S. S. Belyshev, K. A. Stopani, S. Yu. Troschiev, A. S. Kurilik, and A. A. Kuznetsov, Moscow Univ. Phys. Bull 66, 363 (2011). doi 10.3103/S0027134911040059

    Article  ADS  Google Scholar 

  55. S. S. Belyshev, A. N. Ermakov, B. S. Ishkhanov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 745, 133 (2014).

    Article  ADS  Google Scholar 

  56. S. S. Belyshev, B. S. Ishkhanov, A. A. Kuznetsov, A. A. Martynov, and K. A. Stopani, Phys. At. Nucl. 78, 895 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kuznetsov.

Additional information

Original Russian Text © B.S. Ishkhanov, A.A. Kuznetsov, D.E. Lanskoy, A.A. Martynov, 2016, published in Vestnik Moskovskogo Universiteta. Fizika, 2016, No. 3, pp. 3–17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishkhanov, B.S., Kuznetsov, A.A., Lanskoy, D.E. et al. Electromagnetic processes in silver isotopes. Moscow Univ. Phys. 71, 215–228 (2016). https://doi.org/10.3103/S0027134916030061

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134916030061

Keywords

Navigation