Log in

Nuclear spectroscopy of 40–48Ca isotopes

  • Physics of Nuclei and Elementary Particles
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The nature of the excited states of the 40–48Ca isotopes is analyzed in the region of energies below the nucleon separation threshold. A peculiar feature of the 40–48Ca isotopes is the predominant filling of the 1f 7/2 neutron shell. Interaction between the neutrons of the 1f 7/2 shell and the nucleons of the 1d2s core results in formation of multiparticle excited states with a few vacancies in the 1d2s shell. The energies of single-particle proton states in the 40–48Ca isotopes are calculated using the Hartree-Fock potential with the Skyrme potential. The manner in which the energy of single-particle states varies, the magic numbers N = 20, 28 are formed, and the charge and nucleon density vary in the 40–48Ca isotopes as the neutron number increases from 20 to 28 is shown. Coherent interactions of the 1f 7/2 shell and 1d2s core nucleons also manifest themselves in the region above the nucleon separation threshold, leading to the configuration and isospin splitting of the GDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Nuclear Data Center, Brookhaven, Evaluated Nuclear Structure Data File. http://www.nndc.bnl.gov/ensdf/.

  2. Database “Centre for Photonuclear Experiments Data”, CDFE SINP MSU Univ. http://cdfe.sinp.msu.ru/.

  3. G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. Mac-Cormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36 1287 (2012); M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, and B. Pfeiffer, Chin. Phys. C 36 1603 (2012).

    Article  Google Scholar 

  4. I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  5. M. G. Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New York, 1955).

    MATH  Google Scholar 

  6. I. N. Boboshin, Magic numbers and evolution of atomic nuclei shell structure, Doctoral (Phys.-Mat.) Dissertation, Moscow, 2010.

    Google Scholar 

  7. M. Bender, P.-H. Heenen, and P. G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  8. T. H. R. Skyrme, Philos. Mag. 1, 1043 (1956); Nucl. Phys. 9, 615 (1959).

    Article  ADS  MATH  Google Scholar 

  9. D. Vautherin and D. Brink, Phys. Rev. C, Nucl. Phys. 5, 626 (1972).

    Article  ADS  Google Scholar 

  10. S. Goriely, F. Tondeur, and J. M. Pearson, Atom. Data Nucl. Data Tables 77, 311 (2001).

    Article  ADS  Google Scholar 

  11. M. Beiner, H. Flocard, N. van Giai, and P. Quentin, Nucl. Phys. A 238, 29 (1975).

    Article  ADS  Google Scholar 

  12. J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Håkansson, Nucl. Phys. A 386, 79 (1982).

    Article  ADS  Google Scholar 

  13. J. Dobaczewski, H. Flocard, and J. Treiner, Nucl. Phys. A 422, 103 (1984).

    Article  ADS  Google Scholar 

  14. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 627, 710 (1997).

    Article  ADS  Google Scholar 

  15. F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Nucl. Phys. A 420, 297 (1984).

    Article  ADS  Google Scholar 

  16. F. Tondeur, S. Goriely, J. M. Pearson, and M. Onsi, Phys. Rev. C 62, 024308 (2000).

    Article  ADS  Google Scholar 

  17. N. V. Gnezdilov, I. N. Borzov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Rev. C 89, 034304 (2014).

    Article  ADS  Google Scholar 

  18. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  19. H. Grawe, K. Langanke, and G. Martinez-Pinedo, Rep. Prog. Phys. 70, 1525 (2007).

    Article  ADS  Google Scholar 

  20. G. Tertychny, V. Tselyaev, S. Kamerdzhiev, F. Grummer, S. Krewald, J. Speth, A. Avdeenkov, and E. Litvinova, Phys. Lett. B. 647, 104 (2007).

    Article  ADS  Google Scholar 

  21. N. Schweierz, I. Wiedenhover, and A. Volya, ar**v: 0709.3525 [nucl-th].

  22. G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. de Jager, At. Data Nucl. Data Tables 60, 177 (1995).

    Article  ADS  Google Scholar 

  23. B. A. Brown, S. E. Massen, and P. E. Hodgson, J. Phys. G 5, 1655 (1979).

    Article  ADS  Google Scholar 

  24. E. Caurier, K. Langanke, G. Martinez-Pinedo, F. Nowacki, and P. Vogel, Phys. Lett. B. 522, 240 (2001).

    Article  ADS  Google Scholar 

  25. I. Sick, J. B. Bellicard, J. M. Cavedon, B. Frois, M. Huet, P. Leconte, P. X. Ho, and S. Platchkov, Phys. Lett. B. 88, 245 (1979).

    Article  ADS  Google Scholar 

  26. L. Ray, Phys. Rev. C 19, 1855 (1979).

    Article  ADS  Google Scholar 

  27. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 2004) 3rd ed.

    Google Scholar 

  28. B. S. Ishkhanov, M. E. Stepanov, and T. Yu. Tretyakova, Mos. Univ. Phys. Bull. 69, no. 1, 1–20 (2014).

    Article  ADS  Google Scholar 

  29. W. Satula, J. Dobaczewski, and W. Nazarevicz, Phys. Rev. Lett. 81, 3599 (1998).

    Article  ADS  Google Scholar 

  30. T. Duguet, P. Bonche, P.-H. Heenen, and J. Meyer, Phys. Rev. C 65, 014311 (2001).

    Article  ADS  Google Scholar 

  31. J. Margueron, H. Sagawa, and K. Hagino, Phys. Rev. C 77, 054309 (2008).

    Article  ADS  Google Scholar 

  32. I. Talmi, Simple Models of Complex Nuclei (Contemporary Concepts in Physics, Book 7) (Harwood Academic, New York, 1993).

    Google Scholar 

  33. I. Boboshin, V. Varlamov, B. Ishkhanov, S. Yu. Komarov, V. N. Labutin, and V. N. Orlin, Vopr. At. Nauki Tekh., Ser. Yader. Konst. 1, 36 (2007).

    Google Scholar 

  34. E. Ideguchi, D. G. Sarantites, W. Reviol, A. V. Afanasjev, M. Devlin, C. Baktash, R. V. Janssens, D. Rudolph, A. Axelsson, M. P. Carpenter, A. Galindo-Uribarri, D. R. LaFosse, T. Lauritsen, F. Lerma, C. J. Lister, P. Reiter, D. Seweryniak, M. Weiszflog, and J. N. Wilson, Phys. Rev. Lett. 87, 222501 (2001).

    Article  ADS  Google Scholar 

  35. M. Lach, J. Styczen, W. Meczynski, P. Bednarczyk, J. Grebosz, A. Maj, and M. Zieblinski, Eur. Phys. J. A 16, 309 (2003).

    Article  ADS  Google Scholar 

  36. M. Lach, J. Styczen, W. Meczynski, P. Bednarczyk, J. Grebosz, A. Maj, M. Kadluczka, and M. Zieblinski, et al., Eur. Phys. J. A 12, 381 (2001).

    Article  ADS  Google Scholar 

  37. N. Lawley, N. Dawson, G. D. Jones, I. G. Main, P. J. Mulhern, R. D. Symes, and M. F. Thomas, Nucl. Phys. A 149, 95 (1970).

    Article  ADS  Google Scholar 

  38. P. M. Endt, Nucl. Phys. A 521, 1 (1990).

    Article  ADS  Google Scholar 

  39. J. L. Wood, K. Heyde, W. Nazarewicz, M. Huyse, and P. van Duppen, Phys. Rep. 215, 101 (1992).

    Article  ADS  Google Scholar 

  40. H. T. Fortune, R. R. Betts, J. N. Bishop, M. N. I. Al-Jadir, and R. Middleton, Nucl. Phys. A 294, 208 (1978).

    Article  ADS  Google Scholar 

  41. M. J. Taylor, N. Benczer-Koller, G. Kumbartzki, T. J. Mertzimekis, S. J. Q. Robinson, Y. Y Sharon, L. Zamick, A. E. Stuchbery, C. Hutter, C. W. Beausang, J. J. Ressler, and M. A. Caprio, Phys. Lett. B. 559, 187 (2003).

    Article  ADS  Google Scholar 

  42. S. Schielke, D. Hohn, K.-H. Speidel, O. Kenn, J. Leske, N. Gemein, M. Offer, J. Gerber, P. Maier-Komor, O. Zell, Y. Y. Sharon, and L. Zamick, Phys. Lett. B. 571, 29 (2003).

    Article  ADS  Google Scholar 

  43. K.-H. Spiedel, S. Schielke, O. Kenn, J. Leske, D. Hohn, H. Hodde, J. Gerber, P. Maier-Komor, O. Zell, Y. Y. Sharon, and L. Zamick, Phys. Rev. C 68, 061302 (2003).

    Article  ADS  Google Scholar 

  44. M. J. Taylor, N. Benczer-Koller, L. Bernstein, J. Cooper, K. Hiles, D. S. Judson, G. Kumbartzki, P. Maier-Komor, M. A. McMahan, T. J. Mertzimekis, L. Phair, S. J. Q. Robinson, Y. Y. Sharon, K.-H. Speidel, A. E. Stuchbery, and L. Zamick, Phys. Lett. B 605, 265 (2005).

    Article  ADS  Google Scholar 

  45. S. Szilner, L. Corradi, F. Haas, G. Pollarolo, S. Beghini, B. R. Behera, E. Caurier, E. Fioretto, A. Gadea, A. Latina, G. Montagnoli, F. Nowacki, F. Scarlassara, A. M. Stefanini, M. Trotta, A. M. Vinodkumar, and Y. W. Wu, Eur. Phys. J. A 21, 87 (2004).

    Article  ADS  Google Scholar 

  46. S. G. Nilsson, Kgl. Danske Vidensk. Selsk., Mat.-Fys. Medd. 29, 1 (1955).

    MathSciNet  Google Scholar 

  47. V. V. Balashov, V. G. Shevchenko, and N. P. Yudin, Nucl. Phys. A. 27, 323 (1961).

    Article  Google Scholar 

  48. B. I. Goryachev, B. S. Ishkhanov, V. G. Shevchenko, and B. A. Yuriev, Sov. J. Nucl. Phys. 5, 811 (1967).

    Google Scholar 

  49. B. I. Goryachev, B. S. Ishkhanov, I. M. Kapitonov, I. M. Piskarev, V. G. Shevchenko, and O. P. Shevchenko, Yader. Fiz. 7, 944 (1968).

    Google Scholar 

  50. G. J. Keefe, M. N. Thompson, Y. I. Assafiri, G. J. Keefe, M. N. Thompson, Y. I. Assafiri, and R. E. Pywell, Nucl. Phys. A 469, 239 (1987).

    Article  ADS  Google Scholar 

  51. S. Fallieros and B. Gouland, Nucl. Phys. A. 35, 676 (1962).

    Article  Google Scholar 

  52. B. S. Ishkhanov and V. N. Orlin, Phys. Particl. Nuclei 38, 232 (2007).

    Article  ADS  Google Scholar 

  53. T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and A. Zilges, Phys. Rev. Lett. 85, 274 (2000).

    Article  ADS  Google Scholar 

  54. T. Hartmann, J. Enders, P. Mohr, K. Vogt, S. Volz, and A. Zilges, Phys. Rev. C 65, 034301 (2002).

    Article  ADS  Google Scholar 

  55. T. Hartmann, M. Babilon, S. Kamerdzhiev, E. Linvinova, D. Savran, S. Volz, and A. Zilges, Phys. Rev. Lett. 93, 192501 (2004).

    Article  ADS  Google Scholar 

  56. J. Isaak, D. Savran, M. Fritzsche, D. Galaviz, T. Hartman, S. Kamerdzhiev, J. H. Kelley, E. Kwan, N. Pietralla, C. Romig, G. Rusev, K. Sonnabend, A. P. Tonchev, W. Tornow, and A. Zilges, Phys. Rev. C 83, 034304 (2011).

    Article  ADS  Google Scholar 

  57. V. Derya, D. Savran, J. Endres, M. N. Harakeh, H. Hergert, J. H. Kelley, P. Papakonstantinou, N. Pietralla, V. Yu. Ponomarev, R. Roth, G. Rusev, A. P. Tonchev, W. Tornow, H. J. Wörtche, and A. Zilges, Phys. Lett. B. 730, 288 (2014).

    Article  ADS  Google Scholar 

  58. N. G. Goncharova and V. A. Erokhova, Bull. Russ. Acad. Sci.: Phys. 68, 1756 (2004).

    Google Scholar 

  59. N. G. Goncharova and Yu. A. Skorodumina, Bull. Russ. Acad. Sci., Phys. 75, 1540 (2011).

    Article  Google Scholar 

  60. E. Yuksel, T. Khan, and K. Bozkurt, Nucl. Phys. A 877, 35 (2012).

    Article  ADS  Google Scholar 

  61. P. Papakonstantinou, H. Hergert, V. Yu. Ponomarev, and R. Roth, Phys. Lett. B 709, 270 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Stepanov.

Additional information

Original Russian Text © B.S. Ishkhanov, M.E. Stepanov, T.Yu. Tretyakova, 2014, published in Vestnik Moskovskogo Universiteta. Fizika, 2014, No. 6, pp. 3–22.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishkhanov, B.S., Stepanov, M.E. & Tretyakova, T.Y. Nuclear spectroscopy of 40–48Ca isotopes. Moscow Univ. Phys. 69, 433–456 (2014). https://doi.org/10.3103/S0027134914060095

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134914060095

Keywords

Navigation