Log in

Effect of Inclined Load and Initial Stress on Plane Waves of Thermoelastic Rotating Medium via Three-Phase-Lag Model

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this work, the effect of initial stress and oblique loading on plane waves in thermoelastic media will be investigated in the context of three-phase-lag theory. The entire elastic medium rotates at a uniform angular velocity. The problem is solved numerically by normal modal analysis. Plot and analyze the numerical results for temperature, displacement components, and stress. Graphical results show that the effects of phase delay, tilt angle, and initial stress parameters are evident. Variations in these quantities are plotted in the three-phase hysteresis model (3PHL) and the type III Green and Naghdi theory (G-N III) for insulated boundaries to show the effect of initial stress and angle of inclination in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

DATA AVAILABILITY

Data sharing is not applicable to this paper as no data sets were created or analyzed during the current investigation.

REFERENCES

  1. M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys. 27, 240–253 (1956). https://doi.org/10.1063/1.1722351

    Article  MathSciNet  ADS  Google Scholar 

  2. H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermos-elasticity,” J. Mech. Phys. Sol. 15 (5), 299–309 (1967). https://doi.org/10.1016/0022-5096(67)90024-5

    Article  ADS  Google Scholar 

  3. A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elasticity 2, 1–7 (1972). https://doi.org/10.1007/BF00045689

    Article  Google Scholar 

  4. A. E. Green and P. M. Naghdi, “Thermoelasticity without energy dissipation,” J. Elasticity 31, 189–208 (1993).

    Article  MathSciNet  Google Scholar 

  5. D. Y. Tzou, “A unified field approach for heat conduction from macro-to micro- scales,” J. Heat Transf. 117, 8–16 (1995). https://doi.org/10.1115/1.2822329

    Article  Google Scholar 

  6. R. S. K. Choudhuri, “On thermoelastic three phase lag model,” J. Therm. Stress. 30, 231–238 (2007). https://doi.org/10.1080/01495730601130919

    Article  Google Scholar 

  7. R. Quintanilla and R. Racke, “A note on stability in three-phase-lag heat conduction,” Int. J. Heat Mass Transf. 51, 24–29 (2008). https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045

    Article  Google Scholar 

  8. M. I. A. Othman and E. M. Abd-Elaziz, “Dual-phase-lag model on micropolar thermoelastic rotating medium under the effect of thermal load due to laser pulse,” Ind. J. Phys. 94, 999–1008 (2020). https://doi.org/10.1007/s12648-019-01552-1

    Article  Google Scholar 

  9. E. M. Abd-Elaziz, M. I. A. Othman, and A. M. Alharbi, “The effect of diffusion on the three-phase-lag linear thermoelastic rotating porous medium,” Eur. Phys. J. Plus. 137, 692 (2022). https://doi.org/10.1140/epjp/s13360-022-02887-1

    Article  Google Scholar 

  10. M. I. A. Othman, W. M. Hasona, and E. M. Abd-Elaziz, “Effect of rotation and initial stresses on generalized micropolar thermoelastic medium with three-phase-lag,” J. Comput. Theor. Nanosci. 12, 2030–2040 (2015). https://doi.org/10.1166/jctn.2015.3983

    Article  Google Scholar 

  11. A. M. Alharbi, E. M. Abd-Elaziz, and M. I. A. Othman, “Effect of temperature- dependent and internal heat source on a micropolar thermoelastic medium with voids under 3PHL model,” Z. Angew. Math. Mech. 101, e202000185 (2021). https://doi.org/10.1002/zamm.202000185

  12. M. A. Biot, “The influence of initial stress on elastic waves,” J. Appl. Phys. 11, 522–530 (1940).

    Article  MathSciNet  ADS  Google Scholar 

  13. J. T. Kuo, “Static response of a multilayered medium under inclined surface loads,” J. Geophys. Re. 74, 3195–3207 (1969). https://doi.org/10.1029/JB074i012p03195

    Article  ADS  Google Scholar 

  14. N. R. Garg, R. Kumar, A. Goel, and A. Miglani, “Plane strain deformation of an orthotropic elastic medium using eigen value approach,” Earth Planets Space 55, 3–9 (2003). https://doi.org/10.1186/BF03352457

    Article  ADS  Google Scholar 

  15. M. I. A. Othman, S. M. Abo-Dahab, and H. A. Alosaimi, “The effect of gravity and inclined load in micropolar thermoelastic medium possessing cubic symmetry under G-N theory,” J. Ocean Eng. Sci. 3, 288–294 (2018). https://doi.org/10.1016/j.joes.2018.10.005

    Article  Google Scholar 

  16. A. M. Alharbi, “Two temperature theory on a micropolar thermoelastic media with voids under the effect of inclined load via three-phase-lag model,” Z. Angew. Math. Mech. 101, e202100078 (2021). https://doi.org/10.1002/zamm.202100078

  17. P. Purkait and M. Kanoria, “The effect of inclined load and gravitational field on a 2-D thermoelastic medium under the influence of pulsed laser using dual phase lag model,” Mech. Based Des. Struct. Mach. 51, 6497–6512 (2023). https://doi.org/10.1080/15397734.2022.2048850

    Article  Google Scholar 

  18. P. Ailawalia and N. Singh, “Effect of rotation in a generalized thermoelastic medium with hydrostatic initial stress subjected to Ramp type heating and loading,” Int. J. Thermophys. 30, 2078–2097 (2009). https://doi.org/10.1007/s10765-009-0686-z

    Article  ADS  Google Scholar 

  19. M. I. A. Othman, R. S. Tantawi, and E. M. Abd-Elaziz, “Effect of initial stress on a thermoelastic medium with voids and microtemperatures,” J. Porous Media 19, 155– 172 (2016). https://doi.org/10.1615/JPorMedia.v19.i2.40

    Article  Google Scholar 

  20. M. I. A. Othman and E. M. Abd-Elaziz, “Effect of initial stress and hall current on a magneto-thermoelastic porous medium with micro-temperatures,” Ind. J. Phys. 93, 475–485 (2019). https://doi.org/10.1007/s12648-018-1313-2

    Article  Google Scholar 

  21. E. M. Abd-Elaziz, M. Marin, and M. I. A. Othman, “On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory,” Symmetry Appl. Contin. Mech. 11, 413–430 (2019). https://doi.org/10.3390/sym11030413

    Article  Google Scholar 

  22. E. M. Abd-Elaziz, “Electromagnetic field and initial stress on a porothermoelastic medium,” Struct. Eng. Mech. 78, 1–13 (2021). https://doi.org/10.12989/sem.2021.78.1.001

    Article  Google Scholar 

  23. S. M. Said, E. M. Abd-Elaziz, and M. I. A. Othman, “The effect of initial stress and rotation on a nonlocal fiber-reinforced thermoelastic medium with a fractional derivative heat transfer,” Z. Angew. Math. Mech. 102, e202100110 (2022). https://doi.org/10.1002/zamm.202100110

  24. M. Marin, S. Vlase, R. Ellahi, and M. M. Bhatti, “On the partition of energies for backward in time problem of the thermoelastic materials with a dipolar structure,” Symmetry 11 (7), 863 (2019). https://doi.org/10.3390/sym11070863

    Article  ADS  Google Scholar 

  25. M. Marin, R. Ellahi, S. Vlase, and M. M. Bhatti, “On the decay of exponential type for the solutions in a dipolar elastic body,” J. Taibah Univ. Sci. 14 (1), 534–540 (2020). https://doi.org/10.1080/16583655.2020.1751963

    Article  Google Scholar 

  26. N. Shehzad, A. Zeeshan, M. Shakeel, et al., “Effects of magneto- hydrodynamics flow on multilayer coatings of Newtonian and non-Newtonian fluids through porous inclined rotating channel,” Coatings 12 (4), 430 (2022). https://doi.org/10.3390/coatings12040430

    Article  Google Scholar 

Download references

Funding

There is no funding available for this research article.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work and approved it for publication.

Corresponding authors

Correspondence to Mohamed I. A. Othman, Elsayed M. Abd-Elaziz or Amira E. Younis.

Ethics declarations

On the behalf of all authors, the corresponding author states that there is no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

\({{a}_{2}} = {{a}^{2}} - {{b}^{2}} - {{\Omega }^{2}},\) \({{a}_{3}} = 2ib\Omega ,\) \({{a}_{4}} = - {{\Omega }^{2}} - {{b}^{2}},\) \({{a}_{5}} = 2ib\Omega ,\) \({{b}_{1}} = \;{{b}_{7}}{{b}_{9}},\) \({{b}_{2}} = {{b}_{1}}{{a}^{2}},\) \({{b}_{3}} = K{\text{*}} - ib{{b}_{5}} - {{b}_{6}},\) \({{b}_{4}}\, = \,K{\text{*}}{{a}^{2}} - ib{{b}_{5}}{{a}^{2}} - {{a}^{2}}{{b}_{6}} - {{b}_{7}}{{b}_{8}}\), \({{b}_{5}} = K{{\eta }_{0}} + K{\text{*}}{{\tau }_{\nu }}\), \({{b}_{6}} = K{{\eta }_{0}}{{\tau }_{T}}{{b}^{2}}\), \({{b}_{7}} = 1 - ib{{\tau }_{q}} - \frac{1}{2}{{b}^{2}}\tau _{q}^{2}\), \({{b}_{8}} = \rho C_{0}^{2}{{C}_{E}}{{b}^{2}},\) b9 = \(\frac{{{{\gamma }_{1}}{{T}_{0}}{{b}^{2}}}}{\rho },\) \({{b}_{{10}}} = {{b}_{3}}{{a}_{1}},\) \({{b}_{{11}}} = {{b}_{3}}{{a}_{1}}{{a}^{2}} + {{a}_{4}}{{b}_{3}} + {{b}_{4}}{{a}_{1}} + {{a}_{2}}{{b}_{3}}{{a}_{1}} - {{b}_{1}}{{a}_{1}},\) b12 = \({{b}_{4}}{{a}^{2}}{{a}_{1}}\, + \,{{b}_{4}}{{a}_{4}}\, + \,{{a}_{2}}{{b}_{3}}{{a}_{1}}{{a}^{2}}\, + \,{{a}_{2}}{{b}_{3}}{{a}_{4}}\) + b4a2a1\({{a}_{1}}{{a}^{2}}{{b}_{1}}\, - \,{{b}_{1}}{{a}_{4}}\, - \,{{a}_{1}}{{b}_{2}}\, + \,{{a}_{3}}{{a}_{5}}{{b}_{3}},\) \({{b}_{{13}}} = {{b}_{4}}{{a}^{2}}{{a}_{1}}{{a}_{2}} + {{a}_{2}}{{b}_{4}}{{a}_{4}} - {{a}^{2}}{{a}_{1}}{{b}_{2}} - {{b}_{2}}{{a}_{4}} + {{b}_{4}}{{a}_{3}}{{a}_{5}},\) \({{L}_{0}} = \frac{{{{b}_{{11}}}}}{{{{b}_{{10}}}}},\) L1 = \(\frac{{{{b}_{{12}}}}}{{{{b}_{{10}}}}},\) L2 = \(\frac{{{{b}_{{13}}}}}{{{{b}_{{10}}}}},\) H1n = \(\frac{{{{b}_{2}} - {{b}_{1}}k_{n}^{2}}}{{{{b}_{3}}k_{n}^{2} - {{b}_{4}}}},\) H2n = \( - \frac{{{{a}_{5}}}}{{{{a}_{1}}(k_{n}^{2} - {{a}^{2}}) - {{a}_{4}}}},\) H3n = \(ia - {{k}_{n}}{{H}_{{2n}}},\) H4n = \( - ({{k}_{n}} + ia{{H}_{{2n}}}),\) H5n = \(\frac{\lambda }{{\rho {{C}_{0}}^{2}}}(k_{n}^{2} - {{a}^{2}}) - \frac{{2\mu }}{{\rho {{C}_{0}}^{2}}}({{a}^{2}} + ia{{k}_{n}}{{H}_{{2n}}})\)H1n, H6n = \(\frac{\lambda }{{\rho {{C}_{0}}^{2}}}(k_{n}^{2} - {{a}^{2}}) + \frac{{2\mu }}{{\rho {{C}_{0}}^{2}}}(k_{n}^{2} + ia{{k}_{n}}{{H}_{{2n}}})\)H1n, H7n = \(\frac{\mu }{{\rho C_{0}^{2}}}( - 2{{k}_{n}}ia + {{H}_{{2n}}}k_{n}^{2} + {{a}^{2}}{{H}_{{2n}}}) - \frac{p}{2}\frac{{{{\gamma }_{1}}{{T}_{0}}}}{{\rho C_{0}^{2}}}(k_{n}^{2} - {{a}^{2}}){{H}_{{2n}}}.\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othman, M.I., Abd-Elaziz, E.M. & Younis, A.E. Effect of Inclined Load and Initial Stress on Plane Waves of Thermoelastic Rotating Medium via Three-Phase-Lag Model. Mech. Solids 58, 3333–3345 (2023). https://doi.org/10.3103/S0025654423601775

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654423601775

Keywords:

Navigation