Log in

Precise determination of plutonium in nuclear fuel process samples

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A REDOX-based analytical method was developed for determining the plutonium concentration. In this method, plutonium was oxidized to the +6-oxidation state using of ceric ammonium nitrate solution. The interference from ceric(IV) nitrate was suppressed by reducing its oxidation state from +4 to +3 with sodium nitrite. Hexavalent plutonium in this sample was then reduced to be tetravalent by adding a known volume of excess standard ferrous ammonium sulphate. The dichromate equivalence required for unreacted ferrous ammonium sulphate was determined to obtain the concentration of plutonium. Interference studies from chemicals envisaged to be present in the PUREX process stream, such as dissolved tri-n-butyl phosphate, uranium, and various reagents employed during analysis, were performed for the determination of plutonium concentration. The relative standard deviation was found and it is within ± 1.0% for an aliquot containing plutonium in a range of 0.7–2.5 mg.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. R. Natarajan, IANCAS Bull. 14(2), 27 (1998)

    Google Scholar 

  2. R. Natarajan, B. Raj, J. Nucl. Sci. Technol. 44(3), 393 (2007)

    Article  CAS  Google Scholar 

  3. Lanham WB, Runion TC, Purex process for plutonium and uranium recovery. Oak Ridge National Laboratory, Oak Ridge, ORNL 479, (1949)

  4. R. Natarajan, V. Vijayakumar, R.V. Subba Rao, N.K. Pandey, J. Radioanal. Nucl. Chem. 304(1), 401 (2015)

    Article  CAS  Google Scholar 

  5. R. Natarajan, K. Dhamodharan, P.K. Sharma, S. Pugazhendi, V. Vijayakumar, R.V. Subba Rao, Sep. Sci. Technol. 48, 2494 (2013)

    Article  CAS  Google Scholar 

  6. R. Balasubramanian, D. Darwin Abert Raj, S. Nalini, M. Sai Baba, Int. J. Nucl. Energy. Sci. Technol. 1, 197 (2005)

    Article  CAS  Google Scholar 

  7. S. Bera, R. Balasubramanian, A. Datta, R. Sajimol, S. Nalini, T.S. Lakshmi Narasimahan, M.P. Antony, N. Sivaraman, K. Nagarajan, P.R. Vasudeva Rao, Int. J. Anal. Mass. Spectro. Chromatogr. 1, 55 (2013)

    Article  Google Scholar 

  8. S.K. Aggarwal, S.A. Chitambar, V.D. Kavimandan, A.I. Almaula, P.M. Shah, A.R. Parab, V.L. Sant, H.C. Jain, M.V. Ramaniah, Radiochim. Acta. 27, 1 (1980)

    Article  CAS  Google Scholar 

  9. J. Py, J.E. Groetz, J.C. Hubinois, D. Cardona, Nucl. Instrum. Methods Phys. Res. Sec A: Accel. Spectrom. Detect. Assoc. Equip. 780, 131 (2015)

    Article  CAS  Google Scholar 

  10. Sharma MK, Kamat JV, Ambolikar AS, Pillai JS and Aggarwal SK, BARC: /E/001, 2012.

  11. Chandra Prakash Singh, Abhishek Singh, Indian J. Mater Sci. 2014, 787306 (2014).

    Google Scholar 

  12. O.E. Lanford, S.J. Kiehl A, Am. Chem. Soc. 64(2), 291 (1942)

    Article  CAS  Google Scholar 

  13. W. Davies, W. Gray, Talanta 11, 1203 (1964)

    Article  CAS  Google Scholar 

  14. R.V. Subba Rao, K. Damodaran, G. Santosh Kumar, T.N. Ravi, J. Radioanal. Nucl. Chem. 246, 433 (2000)

    Article  Google Scholar 

  15. K. Akira, K. Hisao, S. Junji, Susumu, J. Nucl. Sci. Technol. 4, 289 (1967)

    Article  Google Scholar 

  16. K. Dhamodharan, A. Pius, Determination of plutonium present in highly radioactive irradiated fuel solution by spectrophotometric method. Nucl. Eng. Technol. 48, 727–732 (2016)

    Article  Google Scholar 

  17. K. Dhamodharan, P. Anitha, Anal. Sci. 32, 401 (2016)

    Article  CAS  Google Scholar 

  18. S. Mishra, S. Ganesh, P. Velavendan, N.K. Pandey, C. Mallika, U.K. Mudali, R. Natarajan, Adv. Chem. Eng. Res. 2(3), 55 (2013)

    Google Scholar 

  19. P. Velavendan, S. Ganesh, N.K. Pandey, R. Geetha, M.K. Ahmed, U. Kamachi Mudali, R. Natarajan, J. Radioanal. Nucl. Chem. 295, 1113 (2013)

    Article  CAS  Google Scholar 

  20. G.R. Waterbury, C.F. Metz, Anal. Chem. 31(7), 1144 (1959)

    Article  CAS  Google Scholar 

  21. J.L. Drummond, R.A. Grant, Talanta 13, 477 (1966)

    Article  CAS  Google Scholar 

  22. E.E. Trusova, N.M. Bobkova, V.S. Gurin, N.I. Gorbachuk, Glass Ceram. 64, 9 (2007)

    Article  Google Scholar 

  23. A.H. Kunz, J. Am. Chem. Soc. 53(1), 98 (1931)

    Article  CAS  Google Scholar 

  24. J. Fitzpatrick, T.A. Meyer, M.E. NeillO, D.H. Lyn, Williams J. Chem. Soc. Perkin. Trans. 2, 927 (1984)

    Article  Google Scholar 

  25. C.A. Colvin. United States: N 1963. https://doi.org/10.2172/408440

Download references

Acknowledgements

The authors are thankful to Smt C.S. Suganyadevi, Smt V. Rekha, Smt C. Shibina, Smt V. Ramya, Smt T. Selvi, and Shri Suresh Borado for their valuable contributions in carrying out the experimental work. The valuable suggestions and guidance of Dr. R.V. Subba Rao, Head, Process & Radio Chemistry Division, Reprocessing Group during preparation of this manuscript are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dhamodharan.

Additional information

Advanced Publication Released Online by J-STAGE November 19, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhamodharan, K., Das, S.N., Sivakumar, D. et al. Precise determination of plutonium in nuclear fuel process samples. ANAL. SCI. 38, 377–382 (2022). https://doi.org/10.2116/analsci.21P281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P281

Keywords

Navigation