Log in

Nylon Monofilament Mold Three-dimensional Microfluidic Chips for Size-exclusion Microchip Electrophoresis: Application to Specific Online Preconcentration of Proteins

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We present a lithography-free procedure for fabricating intrinsically three-dimensional microchannels within PDMS elastomers using nylon monofilament molds. We embedded nylon monofilaments in an uncured PDMS composite to fabricate straight channels of desired length, for use as molds to form the microchannels. Next, we fabricated two layer devices consisting of dialysis membranes, which preconcentrate specific proteins in accordance with molecular weight, in between two layers of PDMS substrates with embedded microchannels. Because of the membrane isolation, analyte exchange between two fluidic layers can be precisely controlled by an applied voltage. More importantly, given that only small molecules pass through the dialysis membrane, the integrated membrane is suitable for molecular sieving or size exclusion for a concentrator prior to microchip electrophoresis. Researchers can use our microchip design for online purification and preconcentration of proteins in the presence of excess reagent immediately after fluorescent labeling. This method's technical advantage is that three-dimensional microstructures, such as microchannels that have a circular cross-section, are readily attainable and can be fabricated in a straightforward manner without using specialized equipment. Our method is a low-cost, environmentally sustainable procedure for fabricating microfluidic devices, and will render microfluidic processes more accessible and easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Kitagawa, Anal. Sci., 2020, 36, 899.

    Article  CAS  PubMed  Google Scholar 

  2. Y. Okamoto, Anal. Sci., 2020, 36, 395.

    Article  CAS  PubMed  Google Scholar 

  3. L.-M. Fu, H.-H. Hou, P.-H. Chiu, and R.-J. Yang, Electrophoresis, 2018, 39, 289.

    Article  CAS  PubMed  Google Scholar 

  4. S. C. Jacobson and J. M. Ramsey, Electrophoresis, 1995, 16, 481.

    Article  CAS  PubMed  Google Scholar 

  5. T. Kawai, K. Sueyoshi, F. Kitagawa, and K. Otsuka, Anal. Chem., 2010, 82, 6504.

    Article  CAS  PubMed  Google Scholar 

  6. K. Sueyoshi, F. Kitagawa, and K. Otsuka, Anal. Chem., 2008, 80, 1255.

    Article  CAS  PubMed  Google Scholar 

  7. F. Kitagawa, T. Ishiguro, M. Tateyama, I. Nukatsuka, K. Sueyoshi, T. Kawai, and K. Otsuka, Electrophoresis, 2017, 38, 2075.

    Article  CAS  PubMed  Google Scholar 

  8. L. Y. Thang, H. H. See, and J. P. Quirino, Anal. Chem., 2016, 88, 9915.

    Article  CAS  PubMed  Google Scholar 

  9. Y. Fukushima, T. Naito, K. Sueyoshi, T. Kubo, F. Kitagawa, and K. Otsuka, Anal. Chem., 2014, 86, 5977.

    Article  CAS  PubMed  Google Scholar 

  10. S. Yamamoto, M. Himeno, M. Kobayashi, M. Akamatsu, R. Satoh, M. Kinoshita, R. Sugiura, and S. Suzuki, Analyst, 2017, 142, 3416.

    Article  CAS  PubMed  Google Scholar 

  11. S. Yamamoto, S. Suzuki, and S. Suzuki, Analyst, 2012, 137, 2211.

    Article  CAS  PubMed  Google Scholar 

  12. A. I. Shallan, R. M. Guijt, and M. C. Breadmore, Angew. Chem., Int. Ed., 2015, 127, 7467.

    Article  Google Scholar 

  13. S. Yamamoto, S. Hirakawa, and S. Suzuki, Anal. Chem., 2008, 80, 8224.

    Article  CAS  PubMed  Google Scholar 

  14. S. Yamamoto, N. Nishida, M. Kinoshita, and S. Suzuki, Chromatography, 2018, 39, 125.

    Article  CAS  Google Scholar 

  15. S. Yamamoto, F. Okada, M. Kinoshita, and S. Suzuki, Analyst, 2018, 143, 4429.

    Article  CAS  PubMed  Google Scholar 

  16. S. Yamamoto, Y. Watanabe, N. Nishida, and S. Suzuki, J. Sep. Sci., 2011, 34, 2879.

    Article  CAS  PubMed  Google Scholar 

  17. S. Dziomba, M. Araya-Farias, C. Smadja, M. Taverna, B. Carbonnier, and N. T. Tran, Anal. Chim. Acta, 2017, 955, 1.

    Article  CAS  PubMed  Google Scholar 

  18. J.-E. Kim, J.-H. Cho, and S.-H. Paek, Anal. Chem., 2005, 77, 7901.

    Article  CAS  PubMed  Google Scholar 

  19. K. Zhou, M. L. Kovarik, and S. C. Jacobson, J. Am. Chem. Soc., 2008, 130, 8614.

    Article  CAS  PubMed  Google Scholar 

  20. D. Wu and A. J. Steckl, Lab Chip, 2009, 9, 1890.

    Article  CAS  PubMed  Google Scholar 

  21. F. Li, R. M. Guijt, and M. C. Breadmore, Anal. Chem., 2016, 88, 8257.

    Article  CAS  PubMed  Google Scholar 

  22. A. J. Kaestli, M. Junkin, and S. Tay, Lab Chip, 2017, 17, 4124.

    Article  CAS  PubMed  Google Scholar 

  23. I. D. Johnston, D. K. McCluskey, C. K. L. Tan, and M. C. Tracey, J. Micromech. Microeng., 2014, 24, 035017.

    Article  CAS  Google Scholar 

  24. B. Jo, L. M. V. Lerberghe, K. M. Motsegood, and D. J. Beebe, J. Microelectromech. Syst., 2000, 9, 76.

    Article  CAS  Google Scholar 

  25. T. Trantidou, M. S. Friddin, K. B. Gan, L. Han, G. Bolognesi, N. J. Brooks, and O. Ces, Anal. Chem., 2018, 90, 13915.

    Article  CAS  PubMed  Google Scholar 

  26. X. Peng, L. Zhao, J. Guo, S. Yang, H. Ding, X. Wang, and Q. Pu, Biosens. Bioelectron., 2015, 72, 376.

    Article  CAS  PubMed  Google Scholar 

  27. N. P. Macdonald, J. M. Cabot, P. Smejkal, R. M. Guijt, B. Paull, and M. C. Breadmore, Anal. Chem., 2017, 89, 3858.

    Article  CAS  PubMed  Google Scholar 

  28. A. K. Au, W. Huynh, L. F. Horowitz, and A. Folch, Angew. Chem., Int. Ed., 2016, 55, 3862.

    Article  CAS  Google Scholar 

  29. H. Hirama, T. Odera, T. Torii, and H. Moriguchi, Biomed. Microdevices, 2012, 14, 689.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Sugiura, H. Hirama, and T. Torii, Sci. Rep., 2015, 5, 13375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. V. I. Vullev, J. Wan, V. Heinrich, P. Landsman, P. E. Bower, B. **a, B. Millare, and G. Jones, J. Am. Chem. Soc., 2006, 128, 16062.

    Article  CAS  PubMed  Google Scholar 

  32. N. Bao, Q. Zhang, J.-J. Xu, and H.-Y. Chen, J. Chromatogr. A, 2005, 1089, 270.

    Article  CAS  PubMed  Google Scholar 

  33. J. C. McDonald, M. L. Chabinyc, S. J. Metallo, J. R. Anderson, A. D. Stroock, and G. M. Whitesides, Anal. Chem., 2002, 74, 1537.

    Article  CAS  PubMed  Google Scholar 

  34. G. G. Morbioli, N. C. Speller, M. E. Cato, T. P. Cantrell, and A. M. Stockton, Sens. Actuators, B, 2019, 284, 650.

    Article  CAS  Google Scholar 

  35. G. V. Kaigala, S. Ho, R. Penterman, and C. J. Backhouse, Lab. Chip, 2007, 7, 384.

    Article  CAS  PubMed  Google Scholar 

  36. S. Yamamoto, M. Kinoshita, T. Ikegami, and S. Suzuki, J. Chromatogr. A, 2018, 1566, 44.

    Article  CAS  PubMed  Google Scholar 

  37. S. Prapaporn, S. Arisawa, C. Wunpen, and D. Wijitar, Anal. Sci., 2020, 36, 1447.

    Article  CAS  PubMed  Google Scholar 

  38. M. Horká, F. Růžička, J. Horký, V. Holá, and K. Šlais, J. Chromatogr. B, 2006, 841, 152.

    Article  Google Scholar 

  39. D. M. Cannon, T.-C. Kuo, P. W. Bohn, and J. V. Sweedler, Anal. Chem., 2003, 75, 2224.

    Article  CAS  PubMed  Google Scholar 

  40. Y. Satomi, Y. Shimonishi, T. Hase, and T. Takao, Rapid Commun. Mass Spectrom., 2004, 18, 2983.

    Article  CAS  PubMed  Google Scholar 

  41. K. Schmid, R. B. Nimerg, A. Kimura, H. Yamaguchi, and J. P. Binette, Biochim. Biophys. Acta, 1977, 492, 291.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (17K15439 and 20K06993) from the Japan Society of the Promotion of Science (JSPS). This research was also supported by a grant from the Takeda Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachio Yamamoto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Maetani, K., Tatsumi, G. et al. Nylon Monofilament Mold Three-dimensional Microfluidic Chips for Size-exclusion Microchip Electrophoresis: Application to Specific Online Preconcentration of Proteins. ANAL. SCI. 37, 1511–1516 (2021). https://doi.org/10.2116/analsci.21P080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P080

Keywords

Navigation