Log in

Polyphenol Analysis in Black Tea with a Carbon Nanotube Electrode

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An electrochemical analysis of polyphenols (theaflavin (TF1), theaflavin-3-gallate (TF2A), theaflavin-3'-gallate (TF2B), theaflavin-3,3'-digallate (TF3), and epigallocatechingallate (EGCG)) in a black tea infusion is demonstrated. The characterization of each polyphenol in a solution containing only a single type of polyphenol for a redox reaction at the CNT electrode with cyclic voltammetry (CV) was conducted. The oxidation peak at around +0.30 V for TF1 is assigned to catechol group in a benzotropolone ring. The oxidation peak at around +0.35 V for TF2A, TF2B, and TF3 is assigned to both of the catechol groups in the benzotropolone ring and the pyrogallol group in the gallate ring. The oxidation peak at around +0.35 V for EGCG is assigned to a pyrogallol group in the gallate ring. Current changes of those individual polyphenols at the peak potential are proportional to their concentrations (linear range 0.28 - 94 μΜ; detection limit 0.11 μΜ). The CV curve for real black tea, which is mainly composed of a mixture of the mentioned five compounds, is produced by the sum of those. The current change of the mixture solution of polyphenols is also proportional to the mass concentration of the total polyphenols and the sensitivity defined as the slope of current vs. concentration plot is independent of the ratio of the individual polyphenols. This indicates that the peak current at around +0.35 V can quantify the total amount of polyphenols in a black tea. Additionally, the shape of the CV curve can roughly estimate the ratio of [catechins]/[theaflavins]. The values for real samples determined from CVs show good agreement with that obtained by high-performance liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nakayama, K. Suzuki, M. Toda, S. Okubo, Y. Hara, and T. Shimamura, Antiviral Res., 1993, 21, 289.

    Article  CAS  PubMed  Google Scholar 

  2. A. Saito, R. Nakazato, Y. Suhara, M. Shibata, T. Fukui, T. Ishii, T. Asanuma, K. Mochizuki, T. Nakayama, and N. Osakabe, J. Nutr. Biochem., 2016, 32, 107.

    Article  CAS  PubMed  Google Scholar 

  3. N. Khan and H. Mukhtar, Life Sci., 2007, 81, 519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Y. Yilmaz, Trend Food Sci. Technol., 2006, 17, 64.

    Article  CAS  Google Scholar 

  5. B.-L. Lee and C.-N. Ong, J. Chromatogr. A, 2000, 881, 439.

    Article  CAS  Google Scholar 

  6. D. D. Rio, A. J. Stewart, W. Mullen, J. Burns, M. E. J. Lean, F. Brighenti, and A. Crozier, J. Agric. Food Chem., 2004, 52, 2807.

    Article  PubMed  Google Scholar 

  7. Y. Liang, J. Lu, L. Zhang, S. Wu, and Y. Wu, Food Chem., 2003, 80, 283.

    Article  CAS  Google Scholar 

  8. W. Tao, Z. Zhou, B. Zhao, and T. Wei, J. Pharm. Biomed. Anal., 2016, 131, 140.

    Article  CAS  PubMed  Google Scholar 

  9. X.-G. Wang, J. Li, and Y.-J. Fan, Microchim. Acta, 2010, 169, 173.

    Article  CAS  Google Scholar 

  10. A. Goodwin, C. E. Banks, and R. G. Compton, Electroanalysis, 2006, 18, 849.

    Article  CAS  Google Scholar 

  11. I. Novak, M. Šeruga, and Š. Komorsky-Lovrić, Electroanalysis, 2009, 21, 1019.

    Article  CAS  Google Scholar 

  12. K. Fan, J. **, W. Tang, J. Wu, Y. Ying, and O. Zhou, J. Agric. Food Chem., 2012, 60, 6333.

    Article  CAS  PubMed  Google Scholar 

  13. J. Singh, A. P. Bhondekar, M. L. Singla, and A. Sharma, ACS Appl. Mater. Interfaces, 2013, 5, 5346.

    Article  CAS  PubMed  Google Scholar 

  14. S. Masoum, M. Behpour, F. Azimi, and M. H. Motaghedifard, Sens. Actuators, B, 2014, 193, 582.

    Article  CAS  Google Scholar 

  15. M. M. Dávila, M. S. Flores, and M. P. Elizalde, ECS Trans., 2008, 15, 447–460.

    Article  Google Scholar 

  16. D. Guo, D. Zhenog, G. Mo, and J. Ye, Electroanalysis, 2009, 21, 762.

    Article  CAS  Google Scholar 

  17. L.-J. Yang, C. Tang, H.-Y. **ong, X.-H. Zhang, and S.-F. Wang, Bioelectrochemistry, 2009, 75, 158.

    Article  CAS  PubMed  Google Scholar 

  18. R. Thangaraj, N. Manjula, and A. S. Kumar, Anal. Methods, 2012, 4, 2922.

    Article  CAS  Google Scholar 

  19. V. Roginsky, T. Barsukova, C. F. Hsu, and P. A. Kilmartin, J. Agric. Food Chem., 2003, 51, 5798.

    Article  CAS  PubMed  Google Scholar 

  20. P. A. Kilmartin and C. F. Hsu, Food Chem., 2003, 82, 501.

    Article  CAS  Google Scholar 

  21. I. Novak, M. Šeruga, and Š. Komorsky-Lovri´c, Food Chem., 2010, 122, 1283.

    Article  CAS  Google Scholar 

  22. A. R. Fernando and J. A. Plambeck, Analyst, 1988, 113, 479.

    Article  CAS  PubMed  Google Scholar 

  23. Y. Yoshida, Anal. Sci., 2018, 34, 257.

    Article  CAS  PubMed  Google Scholar 

  24. H. Muguruma, Y. Inoue, H. Inoue, and T. Ohsawa, J. Phys. Chem. C, 2016, 120, 12284.

    Article  CAS  Google Scholar 

  25. H. Muguruma, Plasma Processes Polym., 2010, 7, 151.

    Article  CAS  Google Scholar 

  26. A. K. Timbola, C. D. de Souza, C. Giacomelli, and A. Spinelli, J. Braz. Chem. Soc., 2006, 17, 139.

    Article  CAS  Google Scholar 

  27. K. Lemańska, H. Szymusiak, B. Tyrakowska, R. Zieliński, A. E. M. F. Soffers, and M. C. M. Rietjens, Free Radical Biol. Med., 2001, 31, 869.

    Article  Google Scholar 

  28. L. P. Souza, F. Calegari, A. J. G. Zarbin, L. H. Marcolino-Júnior, and M. F. Bergamini, J. Agric. Food Chem., 2011, 59, 7620.

    Article  CAS  PubMed  Google Scholar 

  29. P. A. Kilmartin, H. Zou, and A. L. Waterhouse, Am. J. Enol. Vitic., 2002, 53, 294.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by Project for Research Grant (Branding) of QOL improvement and Life Science Consortium from Shibaura Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Muguruma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murakami, S., Takahashi, S., Muguruma, H. et al. Polyphenol Analysis in Black Tea with a Carbon Nanotube Electrode. ANAL. SCI. 35, 529–534 (2019). https://doi.org/10.2116/analsci.18P516

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P516

Keywords

Navigation