Log in

An Ionic Liquid-based Microextraction Method for Ultra-High Preconcentration of Paraquat Traces in Water Samples Prior to HPLC Determination

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

An ionic liquid (IL)-based microextraction method was developed for the preconcentration of paraquat traces in water samples prior to HPLC determination. On the basis of the relationship between the aqueous solubility and the extractability of known ILs, 1-ethyl-3-methylimidazolium bis(nonafluorobutanesulfonyl)amide ([EMIm][NNf2]) was selected as the extractant for paraquat. The distribution ratio of paraquat dication in the [EMIm][NNf2]/water biphasic system was theoretically estimated to be nearly 108 at its maximum level, indicating that [EMIm][NNf2] was suitable for the ultra-high preconcentration (a maximum of 106-fold concentration) of paraquat with a quantitative recovery (more than 99%). The extraction procedure could be performed easily and quickly following the in situ solvent formation microextraction technique, and the paraquat traces in the IL phase could be determined by hydrophilic interaction chromatography with good detection limits and linearity ranges (0.16 and 1–50 ng mL−1 for paraquat, respectively). The combined method was successfully applied to four real environmental water samples spiked with paraquat and its analog, diquat at 5.0 ng mL−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Haley, Clin. Toxicol., 1979, 14, 1.

    Article  CAS  PubMed  Google Scholar 

  2. P. N. Moreira, P. G. Pinho, M. T. Baltazar, M. L. Bastos, F. Carvalho, and R. J. Dinis-Oliveira, Biomed. Chromatogr., 2012, 26, 338.

    Article  CAS  PubMed  Google Scholar 

  3. S. K. Baeck, Y. S. Shin, H. S. Chung, and M. Y. Pyo, Arch. Pharmacal Res., 2007, 30, 235.

    Article  CAS  Google Scholar 

  4. R. D. Whitehead Jr., M. A. Montesano, N. K. Jayatilaka, B. Buckley, B. Winnik, L. L. Needham, and D. B. Barr, J. Chromatogr. B, 2010, 878, 2548.

    Article  CAS  Google Scholar 

  5. X. L. Ruan, J. J. Qiu, C. Wu, T. Huang, R. B. Meng, and Y. Q. Lai, J. Chromatogr. B, 2014, 965, 85.

    Article  CAS  Google Scholar 

  6. J. A. Oh, J. B. Lee, S. H. Lee, and H. S. Shin, J. Sep. Sci., 2014, 37, 2900.

    Article  CAS  PubMed  Google Scholar 

  7. M. S. F. Santos, L. M. Madeira, and A. Alves, J. Liq. Chromatogr. Relat. Technol., 2015, 38, 472.

    Article  CAS  Google Scholar 

  8. F. Latifeh, Y. Yamini, and S. Seidi, Environ. Sci. Pollut. Res., 2016, 23, 4411.

    Article  CAS  Google Scholar 

  9. L. Gao, J. Liu, H. Yuan, and X. Deng, Chromatographia, 2015, 78, 125.

    Article  CAS  Google Scholar 

  10. K. D. Clark, O. Nacham, J. A. Purslow, S. A. Pierson, and J. L. Anderson, Anal. Chim. Acta, 2016, 934, 9.

    Article  CAS  PubMed  Google Scholar 

  11. G. Bapat, C. Labade, A. Chaudhari, and S. Zinjarde, Adv. Colloid Interface Sci., 2016, 237, 1.

    Article  CAS  PubMed  Google Scholar 

  12. S. Kimura, Y. Shimizu, A. Eguchi, and N. Hirayama, Solvent Extr. Res. Dev., Jpn., 2016, 23, 145.

    Article  CAS  Google Scholar 

  13. Y. Kudo, M. Shibata, S. Nomura, and N. Ogawa, Anal. Sci., 2017, 33, 739.

    Article  CAS  PubMed  Google Scholar 

  14. A. Eguchi, K. Morita, and N. Hirayama, Anal. Sci., 2017, 33, 1447.

    Article  CAS  PubMed  Google Scholar 

  15. T. Mizuta, K. Maeno, K. Sueyoshi, T. Endo, and H. Hisamoto, Anal. Sci., 2018, 34, 517.

    Article  CAS  PubMed  Google Scholar 

  16. M. Toita, K. Morita, and N. Hirayama, Anal. Sci., 2018, 34, 1063.

    Article  CAS  PubMed  Google Scholar 

  17. Q. Zhou, H. Bai, G. **e, and J. **ao, J. Chromatogr. A, 2008, 1188, 148.

    Article  CAS  PubMed  Google Scholar 

  18. M. Baghdadi and F. Shemirani, Anal. Chim. Acta, 2008, 613, 56.

    Article  CAS  PubMed  Google Scholar 

  19. M. M. P. Vázquez, P. P. Vázquez, M. M. Galera, M. D. G. García, and A. Uclés, J. Chromatogr. A, 2013, 1291, 19.

    Article  Google Scholar 

  20. C. Toledo-Neira and A. Álvarez-Lueje, Talanta, 2015, 134, 619.

    Article  CAS  PubMed  Google Scholar 

  21. T. Hamamoto, M. Okai, and S. Katsuta, J. Phys. Chem. B, 2015, 119, 6317.

    Article  CAS  PubMed  Google Scholar 

  22. S. K. Quek, I. M. Lyapkalo, and H. V. Huynh, Tetrahedron, 2006, 62, 3137.

    Article  CAS  Google Scholar 

  23. S. Igarashi and T. Yotsuyanagi, in Solvent Extraction 1990: Proceedings of the International Solvent Extraction Conference (ISEC '90), ed. T. Sekine and S. Kusakabe, 1992, Elsevier, Amsterdam, 1725–1730.

  24. M. Baghdadi and F. Shemirani, Anal. Chim. Acta, 2009, 634, 186.

    Article  CAS  PubMed  Google Scholar 

  25. Y. Suzuki, T. Kaneko, and K. Saito, Forensic Toxicol., 2018, 36, 458.

    Article  CAS  Google Scholar 

  26. S. Seki, S. Tsuzuki, K. Hayamizu, Y. Umebayashi, N. Serizawa, K. Takei, and H. Miyashiro, J. Chem. Eng. Data, 2012, 57, 2211.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Miho Okai (Graduate School of Science, Chiba University) for her support concerning the measurements of the density and solubility of [EMIm][NNf2]. The authors also thank Mr. T. Nakamura (Graduate School of Science and Engineering, Chiba University) and Ms. S. Kado (Center for Analytical Instrumentation, Chiba University) for their support in MS analysis of [EMIm][NNf2]. This research was financially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI [Grant numbers JP26410145, JP15H00304, JP16H00316].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takuya Hamamoto or Shoichi Katsuta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamamoto, T., Katsuta, S. An Ionic Liquid-based Microextraction Method for Ultra-High Preconcentration of Paraquat Traces in Water Samples Prior to HPLC Determination. ANAL. SCI. 34, 1439–1444 (2018). https://doi.org/10.2116/analsci.18P369

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P369

Keywords

Navigation