Log in

Innate lymphoid cell subsets and their cytokines in autoimmune diseases

  • Review
  • Published:
European Cytokine Network

Abstract

Both the innate and adaptive arms of the immune system are involved in the development of autoimmune diseases. The main mechanism of disease is due to adaptive immune cells that are active against self-antigens. These cells can cause major damage to body tissues. Innate lymphoid cells (ILCs) are an important type of innate immune cell, whose role has been highlighted in recent years. ILCs are responsible for some of the inflammation in the pathogenesis of autoimmune diseases. In this review, we discuss the role of ILCs in the immune response, as well as their involvement in various autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geremia A, Arancibia-Cárcamo CV. Innate lymphoid cells in intestinal inflammation. Front Immunol 2017; 8: 1296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Withers DR. Innate lymphoid cell regulation of adaptive immunity. Immunology 2016; 149(2):123–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gronke K, Kofoed-Nielsen M, Diefenbach A. Innate lymphoid cells, precursors and plasticity. Immunol Lett 2016; 179: 9–18.

    Article  CAS  PubMed  Google Scholar 

  4. Spits H, Artis D, Colonna M, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 2013; 13 (2):145.

    Article  CAS  PubMed  Google Scholar 

  5. Zhong C, Zhu J. Transcriptional regulatory network for the development of innate lymphoid cells. Mediat Inflamm 2015; 2015.

  6. Cortez VS, Robinette ML, Colonna M. Innate lymphoid cells: new insights into function and development. Curr Opin Immunol 2015; 32: 71–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiao Y, Huntington ND, Belz GT, Seillet C. Type 1 innate lymphoid cell biology: lessons learnt from natural killer cells. Front Immunol 2016; 7: 426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ignacio A, Breda CNS, Camara NOS. Innate lymphoid cells in tissue homeostasis and diseases. World J Hepatol 2017; 9 (23):979.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huang Y, Paul WE. Inflammatory group 2 innate lymphoid cells. Int Immunol 2015; 28(1):23–8.

    PubMed  PubMed Central  Google Scholar 

  10. Huang C, Zhu H-X, Yao Y, et al. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun 2019;;102333.

  11. Karagianni P, Tzioufas AG. Epigenetic perspectives on systemic autoimmune disease. J Autoimmun 2019;;102315.

  12. Guo C, Zhou M, Zhao S, et al. Innate lymphoid cell disturbance with increase in ILC1 in systemic lupus erythematosus. Clin Immunol 2019; 202: 49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bekiaris V, Sedý JR, Rossetti M, et al. Human CD4+ CD3− innate-like T cells provide a source of TNF and lymphotoxin-αβ and are elevated in rheumatoid arthritis. J Immunol 2013; 191 (9):4611–8.

    Article  CAS  PubMed  Google Scholar 

  14. Serafini N, Vosshenrich CA, Di Santo JP. Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol 2015; 15(7):415–28.

    Article  CAS  PubMed  Google Scholar 

  15. Spits H, Artis D, Colonna M, et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat Rev Immunol 2013; 13 (2):145–9.

    Article  CAS  PubMed  Google Scholar 

  16. Lim AI, Di Santo JP. ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. Eur J Immunol 2019; 49(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lim AI, Li Y, Lopez-Lastra S, et al. Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 2017; 168(6):1086–100.e10.

    Article  CAS  PubMed  Google Scholar 

  18. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity 2014; 41(3):354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stokic-Trtica V, Diefenbach A, Klose CS. NK cell development in times of innate lymphoid cell diversity. Front Immunol 2020; 11.

  20. Yu X, Wang Y, Deng M, et al. The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. Elife 2014; 3: e04406.

    Article  PubMed Central  CAS  Google Scholar 

  21. Seillet C, Rankin LC, Groom JR, et al. Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med 2014; 211(9):1733–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Constantinides MG, McDonald BD, Verhoef PA, Bendelac A. A committed precursor to innate lymphoid cells. Nature 2014; 508(7496):397–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scoville SD, Mundy-Bosse BL, Zhang MH, et al. A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets. Immunity 2016; 44(5):1140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yagi R, Zhong C, Northrup DL, et al. The transcription factor GATA3 is critical for the development of all IL-7Rα-expressing innate lymphoid cells. Immunity 2014; 40(3):378–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vosshenrich CA, García-Ojeda ME, Samson-Villéger SI, et al. A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 2006; 7(11):1217–24.

    Article  CAS  PubMed  Google Scholar 

  26. Seillet C, Belz G, Huntington N. Development, Homeostasis, and Heterogeneity of NK Cells and ILC1. Curr Topics Microbiol Immunol 2015; 395.

  27. Zook EC, Kee BL. Development of innate lymphoid cells. Nat Immunol 2016; 17(7):775–82.

    Article  CAS  PubMed  Google Scholar 

  28. Bernink JH, Peters CP, Munneke M, et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol 2013; 14(3):221–9.

    Article  CAS  PubMed  Google Scholar 

  29. Firth MA, Madera S, Beaulieu AM, et al. Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 2013; 210(13):2981–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fuchs A, Vermi W, Lee JS, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12-and IL-15-responsive IFN-γ-producing cells. Immunity 2013; 38(4):769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mjösberg JM, Trifari S, Crellin NK, et al. Human IL-25-and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol 2011; 12 (11):1055–62.

    Article  PubMed  CAS  Google Scholar 

  32. Kim BS, Artis D. Group 2 innate lymphoid cells in health and disease. Cold Spring Harb Perspect Biol 2015; 7(5):a016337.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hoyler T, Klose CS, Souabni A, et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 2012; 37(4):634–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Koyasu S, Moro K, Tanabe M, Takeuchi T. Natural helper cells: a new player in the innate immune response against helminth infection. Adv Immunol 2010; 108: 21–44.

    Article  CAS  PubMed  Google Scholar 

  35. Yang Q, Monticelli LA, Saenz SA, et al. T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 2013; 38(4):694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Spencer S, Wilhelm C, Yang Q, et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 2014; 343(6169):432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Spooner CJ, Lesch J, Yan D, et al. Specification of type 2 innate lymphocytes by the transcriptional determinant Gfi1. Nat Immunol 2013; 14(12):1229–36.

    Article  CAS  PubMed  Google Scholar 

  38. Klose CS, Artis D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol 2016; 17(7):765.

    Article  CAS  PubMed  Google Scholar 

  39. Cella M, Fuchs A, Vermi W, et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 2009; 457(7230):722–5.

    Article  CAS  PubMed  Google Scholar 

  40. Cupedo T, Crellin NK, Papazian N, et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat Immunol 2009; 10(1):66.

    Article  CAS  PubMed  Google Scholar 

  41. McKenzie AN, Spits H, Eberl G. Innate lymphoid cells in inflammation and immunity. Immunity 2014; 41(3):366–74.

    Article  CAS  PubMed  Google Scholar 

  42. Cella M, Miller H, Song C. Beyond NK cells: the expanding universe of innate lymphoid cells. Front Immunol 2014; 5: 282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Van De Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol 2010; 10 (9):664–74.

    Article  CAS  PubMed  Google Scholar 

  44. Klose CS, Kiss EA, Schwierzeck V, et al. A T-bet gradient controls the fate and function of CCR6− RORγt+ innate lymphoid cells. Nature 2013; 494(7436):261–5.

    Article  CAS  PubMed  Google Scholar 

  45. Zhong C, Zheng M, Cui K, et al. Differential Expression of the Transcription Factor GATA3 Specifies Lineage and Functions of Innate Lymphoid Cells. Immunity 2020; 52(1):83–95.e4.

    Article  CAS  PubMed  Google Scholar 

  46. Elemam NM, Hannawi S, Maghazachi AA. Innate Lymphoid Cells (ILCs) as Mediators of Inflammation. Release of Cytokines and Lytic Molecules. Toxins (Basel) 2017; 9(12):398.

    Article  CAS  Google Scholar 

  47. Salimi M, Xue L, Jolin H, et al. Group 2 Innate Lymphoid Cells Express Functional NKp30 Receptor Inducing Type 2 Cytokine Production. J Immunol 2016; 196(1):45–54.

    Article  CAS  PubMed  Google Scholar 

  48. Mazzurana L, Rao A, Van Acker A, Mjösberg J. The roles for innate lymphoid cells in the human immune system. Semin Immunopathol 2018; 40(4):407–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mirchandani AS, Besnard A-G, Yip E, et al. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. The J Immunol 2014; 192(5):2442–8.

    Article  CAS  PubMed  Google Scholar 

  50. Guo L, Junttila IS, Paul WE. Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 2012; 33(12):598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fort MM, Cheung J, Yen D, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001; 15(6):985–95.

    Article  CAS  PubMed  Google Scholar 

  52. Lazarevic V, Glimcher LH, Lord GM. T-bet: a bridge between innate and adaptive immunity. Nat Rev Immunol 2013; 13 (11):777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007; 446(7135):557–61.

    Article  CAS  PubMed  Google Scholar 

  54. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008; 29(6):947–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng Y, Valdez PA, Danilenko DM, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 2008; 14(3):282–9.

    Article  CAS  PubMed  Google Scholar 

  56. Klose CS, Flach M, Möhle L, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 2014; 157(2):340–56.

    Article  CAS  PubMed  Google Scholar 

  57. Lucas M, Schachterle W, Oberle K, Aichele P, Diefenbach A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 2007; 26(4):503–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hepworth MR, Fung TC, Masur SH, et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 2015; 348(6238):1031–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gasteiger G, Hemmers S, Bos PD, Sun JC, Rudensky AY. IL-2-dependent adaptive control of NK cell homeostasis. J Exp Med 2013; 210(6):1179–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Monticelli LA, Osborne LC, Noti M, Tran SV, Zaiss DM, Artis D. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci 2015; 112(34):10762–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gerbe F, Sidot E, Smyth DJ, et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 2016; 529(7585):226–30.

    Article  CAS  PubMed  Google Scholar 

  62. Fallon PG, Ballantyne SJ, Mangan NE, et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med 2006; 203(4):1105–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Klose CS, Mahlakõiv T, Moeller JB, et al. The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 2017; 549(7671):282–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cardoso V, Chesné J, Ribeiro H, et al. Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 2017; 549(7671):277–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 2011; 12(11):1045–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Aujla SJ, Chan YR, Zheng M, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat Med 2008; 14(3):275–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aparicio-Domingo P, Romera-Hernandez M, Karrich JJ, et al. Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage. J Exp Med 2015; 212(11):1783–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hams E, Armstrong ME, Barlow JL, et al. IL-25 and type 2 innate lymphoid cells induce pulmonary fibrosis. Proc Natl Acad Sci 2014; 111(1):367–72.

    Article  CAS  PubMed  Google Scholar 

  69. O’Sullivan TE, Rapp M, Fan X, et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 2016; 45(2):428–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Wensveen FM, Jelenčić V, Valentić S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol 2015; 16(4):376–85.

    Article  CAS  PubMed  Google Scholar 

  71. Ohne Y, Silver JS, Thompson-Snipes L, et al. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol 2016; 17(6):646–55.

    Article  CAS  PubMed  Google Scholar 

  72. Bal SM, Bernink JH, Nagasawa M, et al. IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol 2016; 17(6):636–45.

    Article  CAS  PubMed  Google Scholar 

  73. Cortez VS, Ulland TK, Cervantes-Barragan L, et al. SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol 2017; 18(9):995–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. McCann L, Juggins A, Maillard S, et al. The Juvenile Dermatomyositis National Registry and Repository (UK and Ireland)—clinical characteristics of children recruited within the first 5 yr. Rheumatology 2006; 45(10):1255–60.

    Article  CAS  PubMed  Google Scholar 

  75. Ramanan A, Sawhney S, Murray K. Central nervous system complications in two cases of juvenile onset dermatomyositis. Rheumatology 2001; 40(11):1293–8.

    Article  CAS  PubMed  Google Scholar 

  76. Throm AA, Alinger JB, **el JT, Daugherty AL, Pachman LM, French AR. Dysregulated NK cell PLCγ2 signaling and activity in juvenile dermatomyositis. JCI Insight 2018; 3(22).

  77. Tansley SL, Simou S, Shaddick G, et al. Autoantibodies in juvenile-onset myositis: their diagnostic value and associated clinical phenotype in a large UK cohort. J Autoimmun 2017; 84: 55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. O’Gorman MR, Bianchi L, Zaas D, Corrochano V, Pachman LM. Decreased levels of CD54 (ICAM-1)-positive lymphocytes in the peripheral blood in untreated patients with active juvenile dermatomyositis. Clin Diagn Lab Immunol 2000; 7(4):693–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 2001; 97(10):3146–51.

    Article  CAS  PubMed  Google Scholar 

  80. Gross CC, Schulte-Mecklenbeck A, Rünzi A, et al. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci 2016; 113(21):E2973–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eisenstein DM, O’Gorman M, Pachman LM. Correlations between change in disease activity and changes in peripheral blood lymphocyte subsets in patients with juvenile dermatomyositis. J Rheumatol 1997; 24(9):1830–2.

    CAS  PubMed  Google Scholar 

  82. Morita H, Moro K, Koyasu S. Innate lymphoid cells in allergic and nonallergic inflammation. J Allergy Clin Immunol 2016; 138(5):1253–64.

    Article  CAS  PubMed  Google Scholar 

  83. Weidinger S, Novak N. Atopic dermatitis. Lancet 2016; 387 (10023):1109–22.

    Article  PubMed  Google Scholar 

  84. Cabanillas B, Novak N. Atopic dermatitis and filaggrin. Curr Opin Immunol 2016; 42: 1–8.

    Article  CAS  PubMed  Google Scholar 

  85. Cosmi L, Liotta F, Maggi L, Annunziato F. Role of type 2 innate lymphoid cells in allergic diseases. Curr Allergy Asthma Rep 2017; 17(10):66.

    Article  PubMed  CAS  Google Scholar 

  86. Mashiko S, Mehta H, Bissonnette R, Sarfati M. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. J Dermatol Sci 2017; 88(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  87. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2015; 16(1):45.

    Article  CAS  PubMed  Google Scholar 

  88. Kim BS, Siracusa MC, Saenz SA, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 2013; 5 (170):170ra16–ra16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Xue L, Salimi M, Panse I, et al. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J Allergy Clin Immunol 2014; 133(4):1184–94.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang JE, Doherty TA, Baum R, Broide D. Prostaglandin D2 regulates human type 2 innate lymphoid cell chemotaxis. J Allergy Clin Immunol 2014; 133(3):899–901.e3.

    Article  CAS  PubMed  Google Scholar 

  91. Ebbo M, Crinier A, Vély F, Vivier E. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol 2017; 17(11):665.

    Article  CAS  PubMed  Google Scholar 

  92. Schön MP. Adaptive and Innate Immunity in Psoriasis and Other Inflammatory Disorders. Front Immunol 2019; 10.

  93. Huang T-H, Lin C-F, Alalaiwe A, Yang S-C, Fang J-Y. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis. Int J Mol Sci 2019; 20(10):2558.

    Article  CAS  PubMed Central  Google Scholar 

  94. Benhadou F, Mintoff D, Del Marmol V. Psoriasis: keratinocytes or immune cells — Which is the trigger? Dermatology 2019; 235(2):91–100.

    Article  CAS  PubMed  Google Scholar 

  95. Blauvelt A, Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin Rev Allergy Immunol 2018; 55(3):379–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lande R, Botti E, Jandus C, et al. The antimicrobial peptide LL37 is a T-cell autoantigen in psoriasis. Nat Commun 2014; 5: 5621.

    Article  CAS  PubMed  Google Scholar 

  97. Arakawa A, Siewert K, Stöhr J, et al. Melanocyte antigen triggers autoimmunity in human psoriasis. J Exp Med 2015; 212(13):2203–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Teunissen MB, Munneke JM, Bernink JH, et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR+ ILC3 in lesional skin and blood of psoriasis patients. J Invest Dermatol 2014; 134(9):2351–60.

    Article  CAS  PubMed  Google Scholar 

  99. **ong T, Turner J-E, editors. Innate lymphoid cells in autoimmunity and chronic inflammatory diseases. Sem Immunopathol 2018.

  100. Wawrzycki B, Pietrzak A, Grywalska E, Krasowska D, Chodorowska G, Roliṅski J. Interleukin-22 and its correlation with disease activity in plaque psoriasis. Arch Immunol Ther Exp (Warsz) 2019; 67(2):103–8.

    Article  CAS  Google Scholar 

  101. Johnston A, Fritz Y, Dawes SM, et al. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J Immunol 2013; 190(5):2252–62.

    Article  CAS  PubMed  Google Scholar 

  102. Martin D, Townw J, Krikorian G, Klekotka P, Gudjonsson J, Krueger J. The Emerging Role of Interleukin-17 in the Pathogenesis of Psoriasis: Preclinical and Clinical Findings. J Invest Dermatol: 17–26.

  103. Varga J, Wigley FM. Scleroderma-systemic sclerosis. Clin Immunol 2019;;743-55e1.

  104. Horikawa M, Hasegawa M, Komura K, et al. Abnormal natural killer cell function in systemic sclerosis: altered cytokine production and defective killing activity. J Invest Dermatol 2005; 125(4):Error: FPage (731) is higher than LPage (7)!.

  105. Greenblatt MB, Aliprantis AO. The immune pathogenesis of scleroderma: context is everything. Curr Rheumatol Rep 2013; 15(1):297.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Roan F, Stoklasek TA, Whalen E, et al. CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J Immunol 2016; 196(5): Error: FPage (2051) is higher than LPage (62)!.

  107. Deafen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum 1992; 35(3):Error: FPage (311) is higher than LPage (8)!.

  108. Grammatikos AP, Tsokos GC. Immunodeficiency and autoimmunity: lessons from systemic lupus erythematosus. Trends Mol Med 2012; 18(2):Error: FPage (101) is higher than LPage (8)!.

  109. Hou M, Liu S. Innate lymphoid cells are increased in systemic lupus erythematosus. Clin Exp Rheumatol 2019; 37(4):Error: FPage (676) is higher than LPage (9)!.

  110. Düster M, Becker M, Gnirck AC, Wunderlich M, Panzer U, Turner JE. T cell-derived IFN-γ downregulates protective group 2 innate lymphoid cells in murine lupus erythematosus. Eur J Immunol 2018; 48(8):Error: FPage (1364) is higher than LPage (75)!.

  111. Kearney H, Altmann DR, Samson RS, et al. Cervical cord lesion load is associated with disability independently from atrophy in MS. Neurology 2015; 84(4):Error: FPage (367) is higher than LPage (73)!.

  112. Frischer JM, Bramow S, Dal-Bianco A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009; 132(5):Error: FPage (1175) is higher than LPage (89)!.

  113. Russi AE, Walker-Caulfield ME, Ebel ME, Brown MA. Cutting edge: c-Kit signaling differentially regulates type 2 innate lymphoid cell accumulation and susceptibility to central nervous system demyelination in male and female SJL mice. J Immunol 2015; 194(12):Error: FPage (5609) is higher than LPage (13)!.

  114. Kwong B, Rua R, Gao Y, et al. T-bet-dependent NKp46+ innate lymphoid cells regulate the onset of T H 17-induced neuroinflammation. Nat Immunol 2017; 18(10):1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jiang HR, Milovanovic M, Allan D, et al. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur J Immunol 2012; 42 (7):Error: FPage (1804) is higher than LPage (14)!.

  116. Milovanovic M, Volarevic V, Ljujic B, et al. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. PLoS One 2012; 7(9):e45225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yazdani R, Sharifi M, Shirvan AS, Azizi G, Ganjalikhani-Hakemi M. Characteristics of innate lymphoid cells (ILCs) and their role in immunological disorders (an update). Cell Immunol 2015; 298(1–2):66–76.

    Article  CAS  PubMed  Google Scholar 

  118. Hartgring SA, van Roon JA, Wijk MWV, et al. Elevated expression of interleukin-7 receptor in inflamed joints mediates interleukin-7-induced immune activation in rheumatoid arthritis. Arthritis Rheum 2009; 60(9):Error: FPage (2595) is higher than LPage (605)!.

  119. Cuthbert R, Fragkakis E, Dunsmuir R, et al. Human enthesis group 3 innate lymphoid cells. Arthritis Rheumatol 2017; 69(9): Error: FPage (1816) is higher than LPage (22)!.

  120. Koo J, Kim S, Jung WJ, et al. Increased lymphocyte infiltration in rheumatoid arthritis is correlated with an increase in LTi-like cells in synovial fluid. Immune Netw 2013; 13(6):Error: FPage (240) is higher than LPage (8)!.

  121. Ren J, Feng Z, Lv Z, Chen X, Li J. Natural killer-22 cells in the synovial fluid of patients with rheumatoid arthritis are an innate source of interleukin 22 and tumor necrosis factor-α. J Rheumatol 2011; 38(10):Error: FPage (2112) is higher than LPage (8)!.

  122. Segal JP, Mullish BH, Quraishi MN, et al. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease. Ther Adv Gastroenterol 2019; 12: 1756284818822250.

    Article  CAS  Google Scholar 

  123. Zeng B, Shi S, Ashworth G, Dong C, Liu J, **ng F. ILC3 function as a double-edged sword in inflammatory bowel diseases. Cell Death Dis 2019; 10(4):315.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Axelrad JE, Lichtiger S, Yajnik V. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and cancer treatment. World J Gastroenterol 2016; 22(20): 4794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Beaugerie L, Itzkowitz SH. Cancers complicating inflammatory bowel disease. N Engl J Med 2015; 372(15):Error: FPage (1441) is higher than LPage (52)!.

  126. Moschen AR, Tilg H, Raine T. IL-12, IL-23 and IL-17 in IBD: immunobiology and therapeutic targeting. Nat Rev Gastroenterol Hepatol 2019; 16(3):85–96.

    Article  CAS  Google Scholar 

  127. Forkel M, van Tol S, Höög C, Michaëlsson J, Almer S, Mjösberg J. Distinct Alterations in the Composition of Mucosal Innate Lymphoid Cells in Newly Diagnosed and Established Crohn’s Disease and Ulcerative Colitis. J Crohns Colitis 2018; 13(1):67–78.

    Article  Google Scholar 

  128. Michail S, Durbin M, Turner D, et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm Bowel Dis 2012; 18(10):Error: FPage (1799) is higher than LPage (808)!.

  129. Rajca S, Grondin V, Louis E, et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm Bowel Dis 2014; 20(6):Error: FPage (978) is higher than LPage (86)!.

  130. Lissner D, Schumann M, Batra A, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis 2015; 21(6): Error: FPage (1297) is higher than LPage (305)!.

  131. Longman RS, Diehl GE, Victorio DA, et al. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med 2014; 211(8): Error: FPage (1571) is higher than LPage (83)!.

  132. Fournier B, Parkos C. The role of neutrophils during intestinal inflammation. Mucosal Immunol 2012; 5(4):354.

    Article  CAS  PubMed  Google Scholar 

  133. Pearson C, Thornton EE, McKenzie B, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife 2016; 5: e10066.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Vivier E, Artis D, Colonna M, et al. Innate lymphoid cells: 10 years on. Cell 2018; 174(5):Error: FPage (1054) is higher than LPage (66)!.

  135. Valatas V, Kolios G, Bamias G. TL1A (TNFSF15) and DR3 (TNFRSF25): a co-stimulatory system of cytokines with diverse functions in gut mucosal immunity. Front Immunol 2019; 10.

  136. Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007; 446(7135):557.

    Article  CAS  PubMed  Google Scholar 

  137. Koh J, Kim HY, Lee Y, et al. IL-23-producing human lung cancer cells promote tumor growth via conversion of innate lymphoid cell 1 (ILC1) into ILC3. Clin Cancer Res 2019: clincanres 3458.2018.

  138. Barrow AD, Colonna M. Exploiting NK cell surveillance pathways for cancer therapy. Cancers 2019; 11(1):55.

    Article  CAS  PubMed Central  Google Scholar 

  139. Vulpis E, Soriani A, Cerboni C, Santoni A, Zingoni A. Cancer Exosomes as Conveyors of Stress-Induced Molecules: New Players in the Modulation of NK Cell Response. Int J Mol Sci 2019; 20(3):611.

    Article  CAS  PubMed Central  Google Scholar 

  140. Wu C-H, Li J, Li L, et al. Extracellular vesicles derived from natural killer cells use multiple cytotoxic proteins and killing mechanisms to target cancer cells. J Extracell Vesicles 2019; 8 (1):1588538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li S, Yang D, Peng T, Wu Y, Tian Z, Ni B. Innate lymphoid cell-derived cytokines in autoimmune diseases. J Autoimmun 2017; 83: 62–72.

    Article  CAS  PubMed  Google Scholar 

  142. Kim CH, Hashimoto-Hill S, Kim M. Migration and tissue tropism of innate lymphoid cells. Trends Immunol 2016; 37 (1):68–79.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei.

Additional information

Disclosure

There is no conflict of interest to disclose.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, A., Khanmiri, J.M., Eshrat Abadi, M.K. et al. Innate lymphoid cell subsets and their cytokines in autoimmune diseases. Eur Cytokine Netw 31, 118–128 (2020). https://doi.org/10.1684/ecn.2020.0460

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2020.0460

Key words

Navigation