Log in

CSA raw mix design: effect on clinker formation and reactivity

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study assesses the impact of variations of the raw mix design, with respect to the type and proportions of materials, on the formation of calcium sulphoaluminate belite (CSA) type clinkers. Additionally, the hydraulic reactivity, depending on both the raw mix design as well as on the clinker composition, is addressed. Various industrial byproducts and wastes were used to produce raw mixes for different classes of CSA clinkers. The clinkers differed in the ye’elimite over belite ratios: 60/20, 40/40 and 20/60. It was possible to produce all classes of CSA with a relatively comparable mineralogy for a given ye’elimite over belite ratio. The formed clinkers show profoundly different hydration characteristics at early age, depending on the initial raw mix composition. However, after 24 hours, a very comparable hydration development was observed by means of isothermal calorimetry. The hydrates assemblage after 2 days of hydration consists mainly of AFt, X-ray amorphous phases and traces of poorly crystalline phases like aluminium hydroxide and strätlingite. The cement notation is used throughout the document: A = (Al)2O3, C = CaO, F = (Fe)2O3, H = H2O, K = H2O, M = MgO, S = SiO2, T = TiO2, \(\overline{S}\) = (SO)3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang L, Su M, Wang Y (1999) Development of the use of sulfo- and ferroaluminate cements in China. Adv Cem Res 1(1):15–21

    Article  Google Scholar 

  2. Gartner E (2004) Industrially interesting approaches to “low-CO2” cements. CCR 34:1489–1498

    Google Scholar 

  3. Jünger M, Chen I (2011) Composition-property relationships in calcium sulphoaluminate cements, 13th ICCC, Madrid, Spain

  4. Winnefeld F, Lothenbach B (2010) Hydration of calcium sulphoaluminate cements—experimental findings and thermodynamic modelling. CCR 40:1239–1247

    Google Scholar 

  5. Chae W-H, Park D-C, Choi S-H (1996) Early hydration of modified belite cement prepared by adding borax. Korean J Ceram 2(3):147–151

    Google Scholar 

  6. Cuberos AJM, De La Torre AG, Alvarez-Pinazo G, Martin-Sedeno MC, Schollbach K, Pöllmann H, Aranda MAG (2010) Active Iron-rich belite sulfoaluminate cements: clinkering and hydration. Environ Sci Technol 44:6855–6862

    Article  Google Scholar 

  7. Chen IA, Jünger MCG (2010) Synthesis and hydration of calcium sulfoaluminate-belite cements with varied phase compositions, J. Science, Mat, p 10

    Google Scholar 

  8. Adolfsson D, Menad N, Viggh E, Björkman B (2007) Steelmaking slags as raw material for sulphoaluminate belite cement. ACR 19(4):147–156

    Google Scholar 

  9. Belz G, Beretka J, Marrocoli M, Santoro L, Sherman N, Valenti GL (1995) Use of fly ash, blast furnace slag and chemical gypsum for the synthesis of calcium sulphoaluminate-based cements. ACI 153:513–530 (Special publication)

    Google Scholar 

  10. Beretka J, de Vito B, Santoro L, Sherman N, Valenti GL (1993) Utilisation of industrial wastes and by-products for the synthesis of special cements. RCR 9:179–190

    Google Scholar 

  11. Beretka J, Cioffi R, Marrocoli M, Valenti GL (1996) Energy-saving cements obtained from chemical gypsum and other industrial wastes. Waste Manag 16(1–3):231–235

    Article  Google Scholar 

  12. Bullerjahn F, Schmitt D, Ben Haha M (2013) Effect of raw mix design and clinkering procedure on the formation and mineralogical composition of (ternesite) belite calcium sulphoaluminate ferrite clinker. CCR 59:87–95

    Google Scholar 

  13. Makhmudova V, Iskandarova M, Ivanova Y, Chernev G, Ruziev N (2011) Synthesis and properties of sulphoferrite calcium clinkers and low temperature cements on their basis. J Univ Chem Technol Metall 46(2):151–154

    Google Scholar 

  14. Muzhen S, Kurdowski W, Sorrentino F (1992) Development in non-Portland cements, 9th ICCC, Vol. 1, New Delhi, India, pp 317–354

  15. Osokin AP, Krivoborodov YR, Dyukova NF (1992) Sulfoferrite cements, 9th ICCC, Vol. 3, New Dehli, India, pp 256–261

  16. Roy DM, Silsbee MR, Zhaohui X (1999) Influence of surplus SO3 in fbc ash on formation of belite-rich sulphoaluminate clinker, 3rd IAUS, Lexington, USA

  17. Sherman N, Beretka J, Santoro L, Valenti GL (1995) Long-term behaviour of hydraulic binders based on calcium sulphoaluminate and calcium sulfosilicate. CCR 25:113–126

    Google Scholar 

  18. Soner I (2009) Utilization of fluidized bed combustion ashes as a raw material in the production of a special cement, PhD. Thesis, Middle East Technical University, pp 93

  19. Bruker AXS (2008) TOPAS V: general profile and structure analysis software for powder diffraction data. User’s Manual, Bruker AXS, Karlsruhe, p 68

    Google Scholar 

  20. Winnefeld F, Barlag S (2009) Influence of calcium sulfate and calcium hydroxide on the hydration of calcium sulphoaluminate clinker. ZKG Int 62(12):42–53

    Google Scholar 

  21. Calos NJ, Kennard CHL, Whittaker AK, Davis RL (1995) Structure of calcium aluminate sulphate Ca4Al6O16S. J Solid State Chem 119(1):1–7

    Article  Google Scholar 

  22. Saalfeld H, Depmeier W (1972) Silicon-free compounds with sodalite structure. Krist Tech 7:229–233

    Article  Google Scholar 

  23. Mumme WG, Hill RJ, Bushnell-Wye G, Segnit ER (1995) Rietveld crystal structure refinement. Chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrb Miner Abh 169:35–68

    Google Scholar 

  24. Brotherton PD, Epstein JM, Pryce MW, White AH (1974) Crystal structure of calcium sulphosilicate, Ca5(SiO4)2(SO4). Aust J Chem 27:657–660

    Article  Google Scholar 

  25. Colville AA, Geller S (1971) The crystal structure of brownmillerite, Ca2FeAIO5. Acta Crystallogr Sect B 27:2311–2315

    Article  Google Scholar 

  26. Grier D, McCarthy G (1993) ICDD Grant-in-Aid, North Dakota State Univ., Fargo, ND, USA

  27. Mondal P, Jeffery JW (1975) The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Crystallogr Sect B 31:689–697

    Article  Google Scholar 

  28. Hörkner W, Hk Müller-Buschbaum (1976) Crystal-structure of CaAl2O4. Inorg Nucl Chem 38:983–984

    Article  Google Scholar 

  29. Bartl H, Scheller T (1970) Zur Struktur des (CaO)12(Al2O3)7. Neues Jahrb für Miner 35:547–552

    Google Scholar 

  30. Schulz D, McCarthy G (1987) ICDD Grant-in-Aid, North Dakota State University, Fargo, ND, USA

  31. Natl. Bur. Stand. [U.S.] (1967) Monogr. 25, Sec. 5, pp 31

  32. Swainson IP, Dove MT, Schmahl WW, Putnis A (1992) Neutron powder diffraction study of the akermanite-gehlenite, solid solution series. Phys Chem Miner 19:185–189

    Article  Google Scholar 

  33. Gerlach W (1922) Die Gitterstruktur der Erdalkalioxyde. Z Phys 9:184–192

    Article  Google Scholar 

  34. Kirfel A, Will G (1980) Charge density in anhydrite, CaSO4, from X-ray and neutron diffraction measurements. Acta Crystallogr Sect B 36:2881–2890

    Article  Google Scholar 

  35. Sasaki S, Prewitt CT, Bass JD (1987) Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallogr Sect C 43:1668–1674

    Article  Google Scholar 

  36. McGinnety JA (1972) Redetermination of the structures of potassium sulphate and potassium chromate: the effect of electrostatic crystal forces upon observed bond length. Acta Crystallogr Sect B 28:2845–2852

    Article  Google Scholar 

  37. Speer D, Salje E (1986) Phase transitions in langbeinites I: crystal chemistry and structures of K-double sulfates of the langbeinite type M2 ++K2(SO4)3, M+ += Mg, Ni, Co, Zn, Ca. Phys Chem Miner 13(1):17–24

    Article  Google Scholar 

  38. Wagner T, Kulik D, Hingerl FF, Dmytrievana SV (2012) Gem-selektor geochemical modelling package: TSolMod library and data interface for multicomponent phase models. Can Miner 50:1173–1195

    Article  Google Scholar 

  39. Kulik DA, Wagner T, Dmytrieva SV, Kosakowski G, Hingerl FF, Chudnenko KV, Berner UR (2012) GEM-Selektor geochemical modeling package: revised algorithm and GEMS3 K numerical kernel for coupled simulation codes. Comput Geosci 17(1):1–24

    Google Scholar 

  40. Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Nagra Technical Report NTB 02-16, Wettingen, Switzerland

  41. Thoenen T, Kulik D (2003) Nagra/PSI chemical thermodynamic database 01/01 for GEMS-selektor (V.2-PSI) geochemical modelling code, PSI, Villingen

  42. Lothenbach B, Matschei T, Möschner G, Glasser FP (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. CCR 38:1–18

    Google Scholar 

  43. Matschei T, Lothenbach B, Glasser FP (2007) Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. CCR 37:1379–1410

    Google Scholar 

  44. Pliego-Cuervo YB, Glasser FP (1978) Role of sulphates in cement clinkering : the calcium silicosulphate phase. CCR 8:455–460

    Google Scholar 

  45. Pliego-Cuervo YB, Glasser FP (1977) The role of sulphates in cement clinkering reactions : phase formation and melting in the system CaO–Ca2SiO4–CaSO4–K2SO4. CCR 7:477–482

    Google Scholar 

  46. Nielsen AR, Larsen MB, Glarborg P, Dam-Johansen K (2011) High-temperature release of SO2 from calcined cement raw materials. Energy Fuels 25:2917–2926

    Article  Google Scholar 

  47. Paul M, Glasser FP (2000) Impact of prolonged warm (85 °C) moist cure on Portland cement paste. CCR 30(12):1869–1877

    Google Scholar 

  48. Dilnesa BZ, Wieland E, Lothenbach B, Dähn R, Scrivener KL (2014) Fe-containing phases in hydrated cements. CCR 58:45–55

    Google Scholar 

  49. Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Le Saout G, Müller CJ, Famy C (2011) Influence of the calcium sulphate source on the hydration mechanism of Portland cement-calcium sulphoaluminate clinker-calcium sulphate binders. CCC 33:551–561

    Article  Google Scholar 

  50. Cuesta A, Álvarez-Pinazo G, Sanfélix SG, Peral I, Aranda MAG, De la Torre AG (2014) Hydration mechanisms of two polymorphs of synthetic ye’elimite. CCR 63:127–136

    Google Scholar 

  51. Tang FJ, Gartner EM (1988) Influence of sulfate source on Portland cement hydration. Adv Cem Res 1(2):67–74

    Article  Google Scholar 

  52. Dovál M, Paloui M, Kovár V (2004) Heat evolution and mechanisms of hydration in CaO–Al2O3–SO3 system. Ceram Silik 49(2):104–108

    Google Scholar 

  53. Bullard JW, Hamlin MJ, Linvingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ (2012) Mechanisms of cement hydration. CCR 41:1208–1223

    Google Scholar 

  54. Gartner EM, Gaidis JM (1989) Hydration mechanisms, I. In: Skalny J (ed) Material science of concrete. ACS, Washington, DC, pp 95–124

    Google Scholar 

  55. Álvarez-Pinazo G, Cuesta A, García-Mate M, Santacruz I, Losilla ER, Sanfélix SG, Fauth F, Aranda MAG, De la Torre AG (2014) In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction. CCR 56:12–19

    Google Scholar 

  56. Tadzhiev TK, Atakuziev TA, Tadzhiev FK (1973) Hardening of anhydrous calcium sulphoaluminate and sulfosilicate. UDC 691(54):1434–1437

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Jan Skocek for his support and the helpful discussions. Furthermore, we would like to acknowledge the anonymous reviewers for their critical evaluation and contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Bullerjahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullerjahn, F., Zajac, M. & Ben Haha, M. CSA raw mix design: effect on clinker formation and reactivity. Mater Struct 48, 3895–3911 (2015). https://doi.org/10.1617/s11527-014-0451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0451-z

Keywords

Navigation