Log in

Development of 4.0 μm thick film REBCO tapes with length over 10 m by Ohmic heating technique

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

High-temperature superconducting REBCO (RE-(Gd,Y)Ba2Cu3O7-δ)-coated conductor has an immense potential to enable magnetic fields above 20 T because of its high current-carrying capacity, high irreversibility field, and good mechanical properties. Advanced metal organic chemical vapor deposition (A-MOCVD) reactor with ohmic heating has been developed to grow long-length, thick film REBCO tapes in a single pass with superior in-field performance. Multiple long-length 5% Zr-doped REBCO tapes with film thickness ranging from 1 to 4 µm have been produced in an A-MOCVD reactor. The critical current density (Jc) of these conductors has been examined by scanning hall probe microscopy. REBCO-coated conductors with ~ 4 µm thickness exhibit magnetization Jc > 1.5 MA/cm2 at 65 K, 1.5 T and 5.4 MA/cm2 at 4.2 K, 13 T. The microstructure, out-of-plane and in-plane texture of REBCO-coated conductors are also presented.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. J.L. MacManus-Driscoll, S.C. Wimbush, Nat. Rev. Mater. (2021). https://doi.org/10.1038/s41578-021-00290-3

    Article  Google Scholar 

  2. G. Majkic, R. Pratap, E. Galstyan, V. Selvamanickam, IEEE Trans. Appl. Supercond. (2019). https://doi.org/10.1109/tasc.2019.2906425

    Article  Google Scholar 

  3. B.G. Marchionini, Y. Yamada, L. Martini, H. Ohsaki, IEEE Trans. Appl. Superconduct. (2017). https://doi.org/10.1109/TASC.2017.2671680

    Article  Google Scholar 

  4. J. Zhu, W. Yuan, M. Qiu, B. Wei, H. Zhang, P. Chen, Y. Yang, M. Zhang, X. Huang, Z. Li, Appl. Energy (2015). https://doi.org/10.1016/j.apenergy.2014.07.022

    Article  Google Scholar 

  5. H. Moon, Y.C. Kim, H.J. Park, I.K. Yu, M. Park, Supercond. Sci. Technol. (2016). https://doi.org/10.1088/0953-2048/29/3/034009

    Article  Google Scholar 

  6. H. Miyazaki, S. Iwai, Y. Otani, M. Takahashi, T. Tosaka, K. Tasaki, S. Nomura, T. Kurusu, H. Ueda, S. Noguchi, A. Ishiyama, Supercond. Sci. Technol. (2016). https://doi.org/10.1088/0953-2048/29/10/104001

    Article  Google Scholar 

  7. R. Gupta, M. Anerella, A. Ghosh, S.L. Lalitha, W. Sampson, J. Schmalzle, J. Kolonko, R. Scanlan, R. Weggel, E. Willen, K. Nakao, IEEE Trans. Appl. Supercond. (2015). https://doi.org/10.1109/TASC.2014.2364400

    Article  Google Scholar 

  8. L. Stan, Y. Chen, X. **ong, T.G. Holesinger, B. Maiorov, L. Civale, R.F. DePaula, V. Selvamanickam, Q.X. Jia, Supercond. Sci. Technol. (2009). https://doi.org/10.1088/0953-2048/23/1/014011

    Article  Google Scholar 

  9. M. Paidpilli, R. Pratap, M. Kochat, E. Galstyan, C. Goel, G. Majkic, V. Selvamanickam, IEEE Trans. Appl. Supercond. (2021). https://doi.org/10.1109/TASC.2021.3060366

    Article  Google Scholar 

  10. G. Majkic, R. Pratap, A. Xu, E. Galstyan, H.C. Higley, S.O. Prestemon, X. Wang, D. Abraimov, J. Jaroszynski, V. Selvamanickam, Supercond. Sci. Technol. (2018). https://doi.org/10.1088/1361-6668/aad844

    Article  Google Scholar 

  11. A. Moradnouri, A. Ardeshiri, M. Vakilian, A. Hekmati, M. Fardmanesh, J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05539-6

    Article  Google Scholar 

  12. G. Majkic, R. Pratap, M. Paidpilli, E. Galstyan, M. Kochat, C. Goel, S. Kar, J. Jaroszynski, D. Abraimov, V. Selvamanickam, Supercond. Sci. Technol. (2020). https://doi.org/10.1088/1361-6668/ab9541

    Article  Google Scholar 

  13. E. Galstyan, R. Pratap, M. Paidpilli, G. Majkic, V. Selvamanickam, IEEE Trans. Appl. Supercond. (2021). https://doi.org/10.1109/TASC.2021.3061904

    Article  Google Scholar 

  14. Y. Iijima, K. Kakimoto, M. Igarashi, S. Fujita, W. Hirata, S. Muto, T. Yoshida, Y. Adachi, M. Daibo, K. Naoe, T. Fukuzaki, IEEE Trans. Appl. Supercond. (2017). https://doi.org/10.1109/TASC.2017.2660305

    Article  Google Scholar 

  15. G. Majkic, R. Pratap, E. Galstyan, A. Xu, Y. Zhang, V. Selvamanickam, IEEE Trans. Appl. Supercond. (2017). https://doi.org/10.1109/TASC.2016.2637328

    Article  Google Scholar 

  16. S. Chen, X.-F. Li, W. Luo, V. Selvamanickam, IEEE Trans. Appl. Supercond. (2019). https://doi.org/10.1109/TASC.2019.2901989

    Article  Google Scholar 

  17. M.H. Gharahcheshmeh, E. Galstyan, J. Kukunuru, R. Katta, G. Majkic, X.F. Li, V. Selvamanickam, Supercond. Sci. Technol. (2017). https://doi.org/10.1109/TASC.2017.2660768

    Article  Google Scholar 

  18. A. Xu, V. Braccini, J. Jaroszynski, Y. **n, D. Larbalestier, Phys. Rev. (2012). https://doi.org/10.1103/PhysRevB.86.115416

    Article  Google Scholar 

  19. M. Kochat, R. Pratap, E. Galstyan, G. Majkic, V. Selvamanickam, IEEE Trans. Appl. Supercond. (2019). https://doi.org/10.1109/TASC.2019.2905105

    Article  Google Scholar 

  20. V. Selvamanickam, M.H. Gharahcheshmeh, A. Xu, Y. Zhang, E. Galstyan, Supercond. Sci. Technol. (2015). https://doi.org/10.1088/0953-2048/28/10/104003

    Article  Google Scholar 

  21. A. Xu, N. Khatri, Y. Liu, G. Majkic, E. Galstyan, V. Selvamanickam, Y. Chen, C. Lei, D. Abraimov, X. Hu, J. Jaroszynski, IEEE Trans. Appl. Supercond. (2014). https://doi.org/10.1109/TASC.2014.2375231

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the U.S. Department of Energy (DOE) Advanced Manufacturing Office award DE-EE0007869, the U.S. DOE Office of High Energy Physics award DE-SC0016220, and the U.S. DOE SBIR award DE-SC0020717.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Paidpilli.

Ethics declarations

Conflict of interest

One of the authors (VS) has financial interest in AMPeers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paidpilli, M., Boyina, K., Galstyan, E. et al. Development of 4.0 μm thick film REBCO tapes with length over 10 m by Ohmic heating technique. MRS Advances 6, 718–722 (2021). https://doi.org/10.1557/s43580-021-00092-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00092-3

Navigation