Log in

Interfacial detection with nanotube pipette laden graphene quantum dots electrode

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Single-cell analysis is an emerging technology that can provide a mechanistic understanding of complex biological systems and cell heterogeneity. Any disruption of its activity can be monitored through interfacial bioelectrochemistry. A new glass nanopipette electrode laden with graphene quantum dots (20–50 nm) has been constructed for in vitro interfacial bioelectrochemical studies. A platinum or copper wire (0.0006″ dia) was placed inside the glass nanopipette with a tip size of 1 mm which was subsequently covered with graphene by dip coating. The glass nanopipette has been characterized by X-ray fluorescence as containing Si (96.82%), K (2.65%), and Fe (0.20%). The suitability of the electrode for studies involving oxidative stress produced by p-aminophenol (PAP) that results in membrane disruption and the frequency of molecular attachment of PAP to graphene has been relevant to the understanding of cell disruption. In this context, the electrochemical oxidation of PAP has been probed in vitro through differential pulse voltammetry (DPV) using the glass nanopipette electrode. The new electrode shows promise for examining electroactive neurotransmitter during its functioning in chronic diseases.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183–191 (2007)

    Article  CAS  Google Scholar 

  2. Ch. Peigney, E. Laurent, R.R. Flahaut, A. Bacsa, Rousset. Carbon 39(4), 507–514 (2001)

    Article  CAS  Google Scholar 

  3. S. Zhang, H. Wang, J. Liu, C. Bao, Mater. Lett. 261, 127098 (2020)

    Article  CAS  Google Scholar 

  4. H.R. Rees, S.E. Anderson, E. Privman, H.H. Bau, B.J. Venton, Anal. Chem. 87, 3849 (2015)

    Article  CAS  Google Scholar 

  5. S.E. Anderson, H.H. Bau, Nanotechnology 26, 185101 (2015)

    Article  Google Scholar 

  6. R. Hao, B. Zhang, Anal. Chem. 88, 614–620 (2016)

    Article  CAS  Google Scholar 

  7. N.N.N. Ahamed, W. Fan, M. Schrlau, K.S.V. Santhanam, MRS Adv. 3(15–16), 825–830 (2018)

    Article  CAS  Google Scholar 

  8. K.S.V. Santhanam, S. Kandlikar, M. Valentina and Y. Yang, Electrochemical Process for Producing Graphene, Graphene oxide, Metal Composites, and Coated Substrates. U.S. Patent 20160017502 A1, January 21, 2016. Patent No. 9840782, Issue date 12/12/17.

  9. H.B. Stegmann, K. Scheffler, Steric ungehinderte Aroxyle. Z. Naturforsch. TeilB 19, 537–538 (1964)

    Article  Google Scholar 

  10. P. Neta, R.W. Fessenden, Hydroxyl radical reactions with phenols and anilines as studied by electron spin resonance. J. Phys. Chem. 78, 523–529 (1974)

    Article  CAS  Google Scholar 

  11. T. Shiga, K. Imaizumi, Electron spin resonance study on peroxidaseand oxidase-reactions of horseradish peroxidase and methemoglobin. Arch. Biochem. Biophys. 167, 469–479 (1975)

    Article  CAS  Google Scholar 

  12. P.D. Josephy, T.E. Eling, R.P. Mason, Mol. Pharmacol. 23, 461–466 (1983)

    Article  CAS  Google Scholar 

  13. F. Taherian, V. Macron, N.F.A. van der Vegt, Langmuir 28, 1457–1465 (2013)

    Article  Google Scholar 

  14. Z. Kozbhial, C. Li, R. Conaway, S. McGinley, V. Dhingra, F. Vahdat, B. Zhou, H. D’Urso, Langmuir 30, 8598–8606 (2014)

    Article  Google Scholar 

  15. F. Sedaghat, F. Youse, J. Mol. Liquids 278, 299–308 (2019)

    Article  CAS  Google Scholar 

  16. E.J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda, E. Kaxiras, ACS Nano 10, 2803–2818 (2016)

    Article  CAS  Google Scholar 

  17. A.J. Bard, L.R. Faulkner, Electrochemical Methods (Wiley, NJ, 2001).

    Google Scholar 

  18. R.L. Thiago, C. Paixão, Chem. Electrochem. 7(16), 3414–3415 (2020)

    Google Scholar 

  19. M. Singh, A. Sahu, S. Mahata, P.K. Singh, V.K. Rai, A. Rai, New J. Chem. 43(37), 14972–21497 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. M. Schrlau and T. Allston for their help and one of the authors (KSVS) thanks National Science Foundation for the financial support.

Funding

Funding was provided by National Science Foundation (Grant No. 1604893).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. V. Santhanam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, H., Ahamed, N.N.N., Bopp, C. et al. Interfacial detection with nanotube pipette laden graphene quantum dots electrode. MRS Advances 6, 241–246 (2021). https://doi.org/10.1557/s43580-021-00048-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-021-00048-7

Navigation