Log in

Lattice dislocation induced misfit dislocation evolution in semi-coherent {111} bimetal interfaces

  • Invited Paper
  • Focus Issue: Multiscale Materials Modeling of Interface-mediated Thermomechanical Behavior
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The study of dislocation plasticity mediated by semi-coherent interfaces can aid in the design of certain heterostructured materials, such as nanolaminates. The evolution of interface misfit patterns under complex stress fields arising from dislocation pileups can influence local dislocation/interface interactions, including effects of multiple incoming dislocations. This work utilizes the Concurrent Atomistic-Continuum modeling framework to probe the evolution of misfit structures at semi-coherent Ni/Cu and Cu/Ag interfaces im**ed by dislocation pileups generated via nanoindentation. A continuum microrotation metric is computed at various stages of the indentation process and used to visualize the evolution of the interface misfit dislocation pattern. The stress state from approaching dislocations induces mixed contraction and expansion of misfit dislocation structures at the interface. A lower number of misfit nodes per unit interface area coincides with greater localized deformation with regard to atoms near misfit nodes for Ni/Cu. The decreased misfit node spacing for Cu/Ag alternatively distributes the restructuring associated with plastic deformation over a larger percentage of atoms at the interface. Interface sliding facilitated by misfit dislocation motion is found to facilitate deformation extending into the bulk lattices centered on misfit nodes. The depth of penetration of those fields is found to be greater for Ni/Cu than for Cu/Ag.

Graphic abstract

The study of dislocation plasticity mediated by semi-coherent interfaces can aid in the design of certain heterostructured materials, such as nanolaminates. The evolution of interface misfit patterns under complex stress fields arising from dislocation pileups can influence local dislocation/interface interactions, including effects of multiple incoming dislocations. This work utilizes the Concurrent Atomistic-Continuum modeling framework to probe the evolution of misfit structures at semi-coherent Ni/Cu and Cu/Ag interfaces im**ed by dislocation pileups generated via nanoindentation. A continuum microrotation metric is computed at various stages of the indentation process and used to visualize the evolution of the interface misfit dislocation pattern. The stress state from approaching dislocations induces mixed contraction and expansion of misfit dislocation structures at the interface. A lower number of misfit nodes per unit interface area coincides with greater localized deformation with regard to atoms near misfit nodes for Ni/Cu. The decreased misfit node spacing for Cu/Ag alternatively distributes the restructuring associated with plastic deformation over a larger percentage of atoms at the interface. Interface sliding facilitated by misfit dislocation motion is found to facilitate deformation extending into the bulk lattices centered on misfit nodes. The depth of penetration of those fields is found to be greater for Ni/Cu than for Cu/Ag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. X. Wu, P. Jiang, L. Chen, F. Yuan, Y.T. Zhu, Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. 111(20), 7197–7201 (2014)

    Article  CAS  Google Scholar 

  2. X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proc. Natl. Acad. Sci. 112(47), 14501–14505 (2015)

    Article  CAS  Google Scholar 

  3. J. Moering, X. Ma, G. Chen, P. Miao, G. Li, G. Qian, S. Mathaudhu, Y. Zhu, The role of shear strain on texture and microstructural gradients in low carbon steel processed by surface mechanical attrition treatment. Scripta Mater. 108, 100–103 (2015)

    Article  CAS  Google Scholar 

  4. A. Misra, 7—mechanical behavior of metallic nanolaminates, in Nanostructure control of materials. ed. by R.H.J. Hannink, A.J. Hill (Woodhead Publishing, Sawston, 2006), pp. 146–176

    Chapter  Google Scholar 

  5. N.A. Mara, I.J. Beyerlein, Interface-dominant multilayers fabricated by severe plastic deformation: stability under extreme conditions. Cur. Opin. Solid State Mater Sci. 19(5), 265–276 (2015)

    Article  CAS  Google Scholar 

  6. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama et al., An overview of dual-phase steels: advances in microstructure oriented processing and micromechanically guided design. Annu. Rev. Mater. Res. 45, 391–431 (2015)

    Article  CAS  Google Scholar 

  7. A. Sáenz-Trevizo, A.M. Hodge, Nanomaterials by design: a review of nanoscale metallic multilayers. Nanotechnology 31(29), 292002 (2020)

    Article  CAS  Google Scholar 

  8. B.M. Clemens, H. Kung, S.A. Barnett, structure and strength of multilayers. MRS Bull. 24(2), 20–26 (1999)

    Article  CAS  Google Scholar 

  9. Q. Zhou, J.Y. **e, F. Wang, P. Huang, K.W. Xu, T.J. Lu, The mechanical behavior of nanoscale metallic multilayers: a survey. Acta Mech. Sin. 31(3), 319–337 (2015)

    Article  Google Scholar 

  10. R.G. Hoagland, R.J. Kurtz, C.H. Henager, Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater. 50(6), 775–779 (2004)

    Article  CAS  Google Scholar 

  11. I.N. Mastorakos, H.M. Zbib, D.F. Bahr, Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces. Appl. Phys. Lett. 94(17), 173114 (2009)

    Article  CAS  Google Scholar 

  12. M. **ang, Y. Liao, K. Wang, G. Lu, J. Chen, Shock-induced plasticity in semi-coherent 111 cu-ni multilayers. Int J. Plast. 103, 23–38 (2018)

    Article  CAS  Google Scholar 

  13. S. Shao, J. Wang, I.J. Beyerlein, A. Misra, Glide dislocation nucleation from dislocation nodes at semi-coherent 1 1 1 Cu–Ni interfaces. Acta Mater. 98, 206–220 (2015)

    Article  CAS  Google Scholar 

  14. X.Y. Chen, X.F. Kong, A. Misra, D. Legut, B.N. Yao, T.C. Germann, R.F. Zhang, Effect of dynamic evolution of misfit dislocation pattern on dislocation nucleation and shear sliding at semi-coherent bimetal interfaces. Acta Mater. 143, 107–120 (2018)

    Article  CAS  Google Scholar 

  15. H. Yang, L. Zhu, R. Zhang, J. Zhou, Z. Sun, Influence of high stacking-fault energy on the dissociation mechanisms of misfit dislocations at semi-coherent interfaces. Int J. Plast. 126, 102610 (2020)

    Article  Google Scholar 

  16. R.F. Zhang, T.C. Germann, X.Y. Liu, J. Wang, I.J. Beyerlein, Layer size effect on the shock compression behavior of fcc–bcc nanolaminates. Acta Mater. 79, 74–83 (2014)

    Article  CAS  Google Scholar 

  17. R. Dikken, M. Khajeh Salehani, Edge dislocation im**ement on interfaces between dissimilar metals (2017)

  18. A. Couret, J. Crestou, S. Farenc, G. Molenat, N. Clement, A. Coujou, D. Caillard, In situ deformation in T.E.M: recent developments. Microsc. Microanal. Microstruct. 4(2–3), 153–170 (1993)

    Article  CAS  Google Scholar 

  19. S. Shao, J. Wang, A. Misra, R.G. Hoagland, Spiral patterns of dislocations at nodes in (111) semi-coherent FCC interfaces. Sci. Rep. (2013). https://doi.org/10.1038/srep02448

    Article  Google Scholar 

  20. H. Yang, L. Zhu, R. Zhang, J. Zhou, Z. Sun, Shearing dominated by the coupling of the interfacial misfit and atomic bonding at the FCC (111) semi-coherent interfaces. Mate Des. 186, 108294 (2020)

    Article  CAS  Google Scholar 

  21. S. Shao, J. Wang, A. Misra, Energy minimization mechanisms of semi-coherent interfaces. J. Appl. Phys. 116(2), 023508 (2014)

    Article  CAS  Google Scholar 

  22. E.B. Tadmor, M. Ortiz, R. Phillips, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73(6), 1529–1563 (1996)

    Article  Google Scholar 

  23. E.B. Tadmor, F. Legoll, W.K. Kim, L.M. Dupuy, R.E. Miller, Finite-temperature quasi-continuum. Appl. Mech. Rev. (2013). https://doi.org/10.1115/1.4023013

    Article  Google Scholar 

  24. L.E. Shilkrot, R.E. Miller, W.A. Curtin, Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. (2002). https://doi.org/10.1103/PhysRevLett.89.025501

    Article  Google Scholar 

  25. G. Anciaux, T. Junge, M. Hodapp, J. Cho, J.-F. Molinari, W.A. Curtin, The coupled atomistic/discrete-dislocation method in 3d part I: Concept and algorithms. J. Mech. Phys. Solids 118, 152–171 (2018)

    Article  CAS  Google Scholar 

  26. D.L. McDowell, Multiscale modeling of interfaces, dislocations, and dislocation field plasticity, in Mesoscale models. ed. by S. Mesarovic, S. Forest, H. Zbib (Springer, Cham, 2018)

    Google Scholar 

  27. M. Dewald, W.A. Curtin, Analysis and minimization of dislocation interactions with atomistic/continuum interfaces. Model. Simul. Mater. Sci. Eng.. 14(3), 497–514 (2006)

    Article  CAS  Google Scholar 

  28. T. Shimokawa, T. Kinari, S. Shintaku, Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations. Phys. Rev. B. (2007). https://doi.org/10.1103/PhysRevB.75.144108

    Article  Google Scholar 

  29. Y. Chen, S. Shabanov, D.L. McDowell, Concurrent atomistic-continuum modeling of crystalline materials. J. Appl. Phys. 126(10), 101101 (2019)

    Article  CAS  Google Scholar 

  30. S. Xu, R. Che, L. **ong, Y. Chen, D.L. McDowell, A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int J. Plast. 72, 91–126 (2015)

    Article  CAS  Google Scholar 

  31. S. Xu, D.L. McDowell, I.J. Beyerlein, Sequential obstacle interactions with dislocations in a planar array. Acta Mater. 174, 160–172 (2019)

    Article  CAS  Google Scholar 

  32. L. **ong, D.L. McDowell, Y. Chen, Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic-continuum method. Scripta Mater. 67(7–8), 633–636 (2012)

    Article  CAS  Google Scholar 

  33. S. Xu, L. **ong, Y. Chen, D.L. McDowell, Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: a concurrent atomistic continuum study. npj Comput. Mater. 2(1), 15016 (2016)

    Article  CAS  Google Scholar 

  34. S. Xu, L. **ong, Y. Chen, D.L. McDowell, Comparing EAM potentials to model slip transfer of sequential mixed character dislocations across two symmetric tilt grain boundaries in Ni. JOM 69(5), 814–821 (2017)

    Article  CAS  Google Scholar 

  35. S. Xu, Y. Li, and Y. Chen: Si/Ge (111) semicoherent interfaces: Responses to an in-plane shear and interactions with lattice dislocations. Physica Status Solidi (b). 257, 2000274 (2020).

  36. Y. Li, Z. Fan, W. Li, D.L. McDowell, Y. Chen, A multiscale study of misfit dislocations in PbTe/PbSe(001) heteroepitaxy. J. Mater. Res. 34(13), 2306–2314 (2019)

    Article  CAS  Google Scholar 

  37. H. Chen, S. Xu, W. Li, R. Ji, T. Phan, L. **ong, A spatial decomposition parallel algorithm for a concurrent atomistic-continuum simulator and its preliminary applications. Comput. Mater. Sci. 144, 1–10 (2018)

    Article  CAS  Google Scholar 

  38. W.-R. Jian, M. Zhang, S. Xu, I.J. Beyerlein, Atomistic simulations of dynamics of an edge dislocation and its interaction with a void in copper: A comparative study. Modell. Simul. Mater. Sci. Eng. 28(4), 045004 (2020)

    Article  CAS  Google Scholar 

  39. G.H. Vineyard, Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3(1–2), 121–127 (1957)

    Article  CAS  Google Scholar 

  40. A.F. Voter, J.D. Doll, Transition state theory description of surface self-diffusion: comparison with classical trajectory results. J. Chem. Phys. 80(11), 5832–5838 (1984)

    Article  CAS  Google Scholar 

  41. S. Ryu, K. Kang, W. Cai, Predicting the dislocation nucleation rate as a function of temperature and stress. J. Mater. Res. 26(18), 2335–2354 (2011)

    Article  CAS  Google Scholar 

  42. G. Henkelman, B.P. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  CAS  Google Scholar 

  43. X. Zhang, B. Zhang, Y. Mu, S. Shao, C.D. Wick, B.R. Ramachandran, W.J. Meng, Mechanical failure of metal/ceramic interfacial regions under shear loading. Acta Mater. 138, 224–236 (2017)

    Article  CAS  Google Scholar 

  44. G.J. Tucker, J.A. Zimmerman, D.L. McDowell, Continuum metrics for deformation and microrotation from atomistic simulations: application to grain boundaries. Int. J. Eng. Sci. 49(12), 1424–1434 (2011)

    Article  CAS  Google Scholar 

  45. I. Wang, Atomistic simulations of dislocation pileup: grain boundaries interaction. JOM 67(7), 1515–1525 (2015)

    Article  CAS  Google Scholar 

  46. M. Dodaran, J. Wang, Y. Chen, W.J. Meng, S. Shao, Energetic, structural and mechanical properties of terraced interfaces. Acta Mater. 171, 92–107 (2019)

    Article  CAS  Google Scholar 

  47. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation made simple. Phys. Rev. Lett. 97(17), 170201 (2006)

    Article  CAS  Google Scholar 

  48. S. Yang, Y. Chen, Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2175), 20140758 (2015)

    Google Scholar 

  49. X. Tian, J. Cui, M. Yang, K. Ma, M. **ang, Molecular dynamics simulations on shock response and spalling behaviors of semi-coherent 111 Cu-Al multilayers. Int. J. Mech. Sci. 172, 105414 (2020)

    Article  Google Scholar 

  50. C. Ruestes, I. Alhafez, H. Urbassek, C.J. Ruestes, I.A. Alhafez, H.M. Urbassek, Atomistic studies of nanoindentation—a review of recent advances. Curr. Comput.-Aided Drug Des. 7(10), 293 (2017)

    Google Scholar 

  51. S.Z. Chavoshi, S. Xu, Nanoindentation/scratching at finite temperatures: Insights from atomistic-based modeling. Prog. Mater Sci. 100, 1–20 (2019)

    Article  Google Scholar 

  52. E. Tadmor, Modeling Materials: Continuum, Atomistic, and Multiscale Techniques (Cambridge University Press, Cambridge, New York, 2011).

    Book  Google Scholar 

  53. B. Onat, S. Durukanoglu, An optimized interatomic potential for Cu-Ni alloys with the embedded-atom method. J. Phys. Condens. Matter (2014). https://doi.org/10.1088/0953-8984/26/3/035404

    Article  Google Scholar 

  54. P.L. Williams, Y. Mishin, J.C. Hamilton, An embedded-atom potential for the Cu–Ag system. Modell. Simul. Mater. Sci. Eng. 14(5), 817–833 (2006)

    Article  CAS  Google Scholar 

  55. S. Xu, T.G. Payne, H. Chen, Y. Liu, L. **ong, Y. Chen, D.L. McDowell, PyCAC: The concurrent atomistic-continuum simulation environment. J. Mater. Res. 33(7), 857 (2018)

    Article  CAS  Google Scholar 

  56. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2009)

    Article  Google Scholar 

  57. A. Stukowski, K. Albe, Dislocation detection algorithm for atomistic simulations. Modell. Simul. Mater. Sci. Eng. 18(2), 025016 (2010)

    Article  CAS  Google Scholar 

  58. D. Faken, H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2(2), 279–286 (1994)

    Article  CAS  Google Scholar 

  59. I.A. Zimmerman, D.J. Bammann, H. Gao, Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 46(2), 238–253 (2009)

    Article  Google Scholar 

  60. G.J. Tucker, J.A. Zimmerman, D.L. McDowell, Shear deformation kinematics of bicrystalline grain boundaries in atomistic simulations. Modell. Simul. Mater. Sci. Eng. 18(1), 015002 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is based on research supported by the National Science Foundation under the Grants CMMI-1761553 and CMMI-1761512. All presented simulations were conducted using XSEDE resources under allocation TG-MSS150010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Selimov.

Additional information

David McDowell was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selimov, A., Xu, S., Chen, Y. et al. Lattice dislocation induced misfit dislocation evolution in semi-coherent {111} bimetal interfaces. Journal of Materials Research 36, 2763–2778 (2021). https://doi.org/10.1557/s43578-021-00184-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00184-8

Keywords

Navigation