Log in

Carbon Nanotubes Synthesis from Four Different Organic Precursors by CVD

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Carbon nanotubes (CNTs) were synthesized by Chemical Vapor Deposition (CVD) from diethyl ether, butanol, hexane and ethyl acetate. A quartz tube with a stainless steel tube catalyst core with 0.019 m diameter and 0.6 m large formed the reactor. To avoid combustion, argon was used as the carrier gas. Time process ranged 30 to 60 min. The range of CNTs synthesis temperature was 680-850 °C for different precursors. Scanning Electron Microscopy micrographs have demonstrated tangled CNTs growth in all samples, thus presenting difficult length measurement. The CNTs diameters from diethyl ether are 45-200 nm, butanol diameter range from 55-230 nm, hexane diameter range is 50-130 nm and ethyl acetate range from 100 to 300 nm. Carbon content for all samples was higher than 93 %, CNTs from butanol showed carbon concentration up to 99%. FTIR, Raman and X-Ray Spectroscopies spectra for all samples demonstrated the characteristics signals present in carbon nanotubes. This research proposes a simple, effective and innovative method to synthesize CNTs by CVD on iron stainless steel catalyst in combination with diethyl ether, ethyl acetate, butanol and hexane as precursors by applying the principles of green chemistry, sustainability and its ease to be scaled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anastas P. and Eghbali N., “Green chemistry: principles and practice,” Chemical Society Reviews, vol. 39, pp. 301–312, 2010. 10.1039/B918763B

    Article  CAS  Google Scholar 

  2. López-Urías F., Terrones M., and Terrones H., “Beryllium do** graphene, graphene-nanoribbons, C 60-fullerene, and carbon nanotubes,” Carbon, vol. 84, pp. 317–326, 2015. 10.1016/j.carbon.2014.11.053

    Article  Google Scholar 

  3. Salinas-Estevané P. and Cervantes E. M. S., “La química verde en la síntesis de nanoestructuras,” Ingenierías, vol. 15, p. 7, 2012.

    Google Scholar 

  4. Eckelman M. J., Zimmerman J. B., and Anastas P. T., “Toward green nano,” Journal of Industrial Ecology, vol. 12, pp. 316–328, 2008.

    Article  CAS  Google Scholar 

  5. Kumar M. and Ando Y., “Carbon nanotubes from camphor: an environment-friendly nanotechnology,” in Journal of Physics: Conference Series, 2007, p. 643.

  6. Zhang J., Gao M., Hua D., Li Y., Xu H., Liang X., Zhao Y., ** F., Chen L., and Meng G., “Butanol production of Clostridium pasteurianum SE-5 from transesterification reaction solution using fermentation and extraction coupling system,” in Materials for Renewable Energy and Environment (ICMREE), 2013 International Conference on, 2014, pp. 174–178.

  7. Ezeji T. C., Qureshi N., and Blaschek H. P., “Bioproduction of butanol from biomass: from genes to bioreactors,” Current opinion in biotechnology, vol. 18, pp. 220–227, 2007. 10.1016/j.copbio.2007.04.002

    Article  CAS  Google Scholar 

  8. Rajchenberg-Ceceña E., Rodríguez-Ruiz J. A., Juárez K., Martínez A., and Morales S., “Producción Microbiológica de Butanol,” BioTecnología, vol. 13, pp. 26–37, 2009.

    Google Scholar 

  9. Gómez A., González P., García L., Granados F. G., Flores N., López V., and Domratcheva L., “Carbon nanotubes obtained along variations in chemical vapor deposition process for improvement in mechanical properties of an epoxy composite,” Journal of Analytical and Applied Pyrolysis, 2015.

  10. Mahanandia P., Vishwakarma P., Nanda K., Prasad V., Barai K., Mondal A., Sarangi S., Dey G., and Subramanyam S., “Synthesis of multi-wall carbon nanotubes by simple pyrolysis,” Solid State Communications, vol. 145, pp. 143–148, 2008. 10.1016/j.ssc.2007.10.020

    Article  CAS  Google Scholar 

  11. Ordoñez-Casanova E. G., Román-Aguirre M., Aguilar-Elguezabal A., and Espinosa-Magaña F., “Synthesis of Carbon Nanotubes of Few Walls Using Aliphatic Alcohols as a Carbon Source,” Materials, vol. 6, pp. 2534–2542, 2013. 10.3390/ma6062534

    Article  Google Scholar 

  12. Mendoza D., Santiago P., and Pérez E. R., “Carbon nanotubes produced from hexane and ethanol,” Revista mexicana de física, vol. 52, p. 1, 2006.

    Google Scholar 

  13. Lyu S. C., Liu B. C., Lee S. H., Park C. Y., Kang H. K., Yang C.-W., and Lee C. J., “Large-scale synthesis of high-quality double-walled carbon nanotubes by catalytic decomposition of n-hexane,” The Journal of Physical Chemistry B, vol. 108, pp. 2192–2194, 2004. 10.1021/jp030955e

    Article  CAS  Google Scholar 

  14. Terrones M., Botello-Méndez A. R., Campos-Delgado J., López-Urías F., Vega-Cantú Y. I., Rodríguez-Macías F. J., Elías A. L., Muñoz-Sandoval E., Cano-Márquez A. G., and Charlier J.-C., “Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications,” Nano Today, vol. 5, pp. 351–372, 2010. 10.1016/j.nantod.2010.06.010

    Article  Google Scholar 

  15. Teng L.-h., “IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers,” Journal of Zhejiang University SCIENCE A, vol. 9, pp. 720–726, 2008. 10.1631/jzus.A071503

    Article  CAS  Google Scholar 

  16. Jung Y. S. and Jeon D. Y., “Surface structure and field emission property of carbon nanotubes grown by radio-frequency plasma-enhanced chemical vapor deposition,” Applied surface science, vol. 193, pp. 129–137, 2002. 10.1016/S0169-4332(02)00227-1

    Article  CAS  Google Scholar 

  17. Pavia D., Lampman G., Kriz G., and Vyvyan J., Introduction to spectroscopy: Cengage Learning, 2008.

  18. Shiratori Y., Hiraoka H., and Yamamoto M., “Vertically aligned carbon nanotubes produced by radio-frequency plasma-enhanced chemical vapor deposition at low temperature and their growth mechanism,” Materials chemistry and physics, vol. 87, pp. 31–38, 2004. 10.1016/j.matchemphys.2004.03.017

    Article  CAS  Google Scholar 

  19. Antunes E., Lobo A., Corat E., and Trava-Airoldi V., “Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes,” Carbon, vol. 45, pp. 913–921, 2007. 10.1016/j.carbon.2007.01.003

    Article  CAS  Google Scholar 

  20. Costa S., Borowiak-Palen E., Kruszynska M., Bachmatiuk A., and Kalenczuk R., “Characterization of carbon nanotubes by Raman spectroscopy,” Mater Sci-Poland, vol. 26, pp. 433–441, 2008.

    CAS  Google Scholar 

  21. Bepete G., Tetana Z. N., Lindner S., Rümmeli M. H., Chiguvare Z, and Coville N. J., “The use of aliphatic alcohol chain length to control the nitrogen type and content in nitrogen doped carbon nanotubes,” Carbon, vol. 52, pp. 316–325, 2013. 10.1016/j.carbon.2012.09.033

    Article  CAS  Google Scholar 

  22. Sadeghian Z., “Large-scale production of multi-walled carbon nanotubes by low-cost spray pyrolysis of hexane,” New Carbon Materials, vol. 24, pp. 33–38, 2009. 10.1016/S1872-5805(08)60034-7

    Article  CAS  Google Scholar 

  23. Luo Y., Kong D., Jia Y., Luo J., Lu Y., Zhang D., Qiu K., Li C. M., and Yu T., “Self-assembled graphene@ PANI nanoworm composites with enhanced supercapacitor performance,” Rsc Advances, vol. 3, pp. 5851–5859, 2013. 10.1039/c3ra00151b

    Article  CAS  Google Scholar 

  24. Allaedini G., Aminayi P., and Tasirin S. M., “The Effect of Alumina and Magnesia Supported Germanium Nanoparticles on the Growth of Carbon Nanotubes in the Chemical Vapor Deposition Method,” Journal of Nanomaterials, vol. 501, p. 961231, 2015.

    Google Scholar 

  25. Cao A., Xu C., Liang J., Wu D., and Wei B., “X-ray diffraction characterization on the alignment degree of carbon nanotubes,” Chemical physics letters, vol. 344, pp. 13–17, 2001. 10.1016/S0009-2614(01)00671-6

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Domratcheva-Lvova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granados-Martínez, F.G., Contreras-Navarrete, J.J., García-Ruiz, D.L. et al. Carbon Nanotubes Synthesis from Four Different Organic Precursors by CVD. MRS Online Proceedings Library 1817, 53 (2016). https://doi.org/10.1557/opl.2016.53

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/opl.2016.53

Navigation