Log in

Electron Traps in Rutile TiO2 Crystals: Intrinsic Small Polarons, Impurities, and Oxygen Vacancies

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Rutile TiO2 is well known for its ability to “trap” photoinduced electrons at Ti4+ ions and form Ti3+ ions with an unpaired d1 electron. This has been shown experimentally to result in a large family of similar, yet slightly different, Ti3+-related centers that include both intrinsic small polarons and donor-bound small polarons. In these latter centers, the Ti3+ ion is located next to an oxygen vacancy or an impurity such as fluorine, lithium, or hydrogen. These small polarons are easily formed in commercially available bulk single crystals of rutile TiO2 by illuminating oxidized (and nominally undoped) samples at temperatures between 5 and 30 K with sub-band-gap laser light (e.g., 442 nm) or by slight reducing treatments (in the case of hydrogen). Once formed, the ground states of the defects are readily studied at low temperature with magnetic resonance (EPR and ENDOR). Single crystals of rutile TiO2 provide complete sets of angular dependence data, and thus allow detailed information about the ground-state models of the electron traps to be extracted in the form of g matrices and hyperfine matrices. In this review, the differences and similarities of the various Ti3+-related trapped electron centers are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, X. Zhang, and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008).

    Article  CAS  Google Scholar 

  2. S. Yang, L. E. Halliburton, A. Manivannan, P. H. Bunton, D. B. Baker, M. Klemm, S. Horn, and A. Fujishima, Appl. Phys. Lett. 94, 162114 (2009).

    Article  Google Scholar 

  3. S. Yang and L. E. Halliburton, Phys. Rev. B 81, 035204 (2010).

    Article  Google Scholar 

  4. A. T. Brant, S. Yang, N. C. Giles, and L. E. Halliburton, J. Appl. Phys. 110, 053714 (2011).

    Article  Google Scholar 

  5. A. T. Brant, N. C. Giles, and L. E. Halliburton, J. Appl. Phys. 113, 053712 (2013).

    Article  Google Scholar 

  6. S. Yang, A. T. Brant, N. C. Giles, and L. E. Halliburton, Phys. Rev. B 87, 125201 (2013).

    Article  Google Scholar 

  7. A. T. Brant, N. C. Giles, S. Yang, M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, and L. E. Halliburton, J. Appl. Phys. 114, 113702 (2013).

    Article  Google Scholar 

  8. A. T. Brant, E. M. Golden, N. C. Giles, S. Yang, M. A. R. Sarker, S. Watauchi, M. Nagao, I. Tanaka, D. A. Tryk, A. Manivannan, and L. E. Halliburton, Phys. Rev. B 89, 115206 (2014).

    Article  Google Scholar 

  9. S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206 (1971).

    Article  CAS  Google Scholar 

  10. S. Yang, A. T. Brant, and L. E. Halliburton, Phys. Rev. B 82, 035209 (2010).

    Article  Google Scholar 

  11. P. F. Chester, J. Appl. Phys. 32, 2233 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halliburton, L.E. Electron Traps in Rutile TiO2 Crystals: Intrinsic Small Polarons, Impurities, and Oxygen Vacancies. MRS Online Proceedings Library 1731, 1–12 (2014). https://doi.org/10.1557/opl.2015.15

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.15

Navigation