Log in

MOCVD of GaN-based HEMT structures on 8 inch silicon substrates

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Metal organic chemical vapor deposition, as well as material and basic device properties of nitride-based high electron mobility transistor structures on (111) silicon substrates varying in diameter from 4 to 8 inch were studied using in-situ and ex-situ characterization techniques. All substrates used for the growth of the nitride structures in this study were of SEMI standard thicknesses. The total thickness of the nitride structures was in the range of 1.5–5 µm. It is reported that nitride structures can be grown on 4, 6 and 8 inch diameter substrates with very similar post-growth wafer shape, material and device characteristics. It is also shown that their crystal quality, 2DEG transport properties and isolation blocking voltages can be improved by increasing nitride structure thickness while maintaining post-growth wafer bow and warp less than 50 µm. The maximum thickness of nitride structures that can be successfully grown on 8 inch diameter SEMI standard substrates seems to be limited to about 4.5 µm due to plastic deformation of Si. Blocking voltages of more than 700 V were achieved using 4.5 µm thick nitride-based high electron mobility transistor structures grown on 8 inch Si substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Egawa and A. Shuhaimi, J. Physics D: Appl. Physics 43, 354008 (2010)

    Article  Google Scholar 

  2. S. Raghavan and J. M. Redwing, J. Appl. Phys. 98, 023514 (2005)

    Article  Google Scholar 

  3. S. Raghavan, X. Weng, E. Dickey and J. M. Redwing, Appl. Phys. Lett. 88, 041904 (2006)

    Article  Google Scholar 

  4. O. Schultz, A. Dadgar, J. Hennig, O. Krumm, S. Fritze, J. Blasing, H. Witte, A. Diez and A. Krost, Phys. Status Solidi C 11, 3–4, 397 (2014)

    Article  Google Scholar 

  5. A. Dadgar, S. Fritze, O. Schultz, J. Hennig, J. Blasing, H. Witte, A. Diez, U. Heinle, M. Kunze, I. Daumiller, K. Haberland and A. Krost, J. Crystal Growth 370, 278, 2013

    Article  CAS  Google Scholar 

  6. H. Marchand, L. Zhao, N. Zhang, B. Moran, R. Coffie, U. K. Mishra, J. S. Speck, S. P. DenBaars and J. A. Freitas, J. Appl. Physics 89, 12, 7846 (2001)

    Article  CAS  Google Scholar 

  7. A. Reiher, J. Blasing, A. Dadgar, A. Diez, and A. Krost, J. Cryst. Growth 248, 563 (2003)

    Article  CAS  Google Scholar 

  8. B. S. Zhang, M. Wu, J. P. Liu, J. Chen, J. J. Zhu, X. M. Shen, G. Feng, D. G. Zhao, Y. T. Wang, H. Yang, and A. R. Boyd, J. Cryst. Growth 270, 316 (2004)

    Article  CAS  Google Scholar 

  9. H. Amano, M. Iwaya, T. Kashima, M. Katsuragawa, I. Akasaki, J. Han, S. Hearne, J. A. Floro, E. Chason, J. Figiel, Jpn. J. Appl. Phys. 37 (Part 2), L1540 (1998)

    Article  Google Scholar 

  10. E. Feltin, B. Beaumont, M. Laugt, P. de Mierry, P. Vennegues, H. Lahreche, M. Leroux, and P. Gibart, Appl. Phys. Lett. 79, 3230 (2001)

    Article  CAS  Google Scholar 

  11. S. L. Selvaraj, T. Suzue and T. Egawa, IEEE Electron Device Lett v. 30, 6, 587 (2009)

    Article  CAS  Google Scholar 

  12. K. Cheng, H. Liang, M. Van Hove, K. Greens, B. De Jaeger, P. Srivastava, X. Kang, P. Favia, H. Bender, S. Decoutere, J. Dekoster, J. Borniquel, S. Jun and H. Chung, Appl. Phys. Express 5, 011022 (2012)

    Google Scholar 

  13. S. Tripathy, V. K. X. Lin, S. B. Dolmanan, J. P. Y. Tan, R. S. Kajen, L. K. Bera, S. L. Teo, M. K. Kumar, S. Arulkumaran, G. I. Ng, S. Vicknesh, S. Todd, W. Z. Wang, G. Q. Lo, H. Li, D. Lee and S. Han, Appl. Phys. Lett. 101, 082110 (2012)

    Article  Google Scholar 

  14. S. Arulkumaran, G. I. Ng, S. Vicknesh, H. Wang, K. S. Ang, J. P. Y. Tan, V. K. Lin, S. Todd, G. Q. Lo, and S. Tripathy, Jpn. J. Appl. Phys. 51, 111001 (2012)

    Article  Google Scholar 

  15. Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi and K. Matsumoto, Jpn. J. Appl. Phys. 52, 08JB06 (2013)

    Article  Google Scholar 

  16. D. Christy, T. Egawa, Y. Yano, H. Tokunaga, H. Shimamura, Y. Yamaoka, A. Ubukata, T. Tabuchi and K. Matsumoto, Appl. Phys. Express 6, 026501 (2013)

    Article  Google Scholar 

  17. M. Zhao, Y. Sirapalli, P. K. Kandaswamy, H. Liang, A. Firrincieli, S. Decoutere and E. Vancoille, Phys. Status Solidi C 11, 446 (2014)

    Article  CAS  Google Scholar 

  18. S. Tripathy, L. M. Kyaw, S. B. Dolmanan, Y. J. Ngoo, Y. Liu, M. K. Bera, S. P. Singh, H. R. Tan, T. N. Bhat and E. F. Chor, ECS Journal of Solid State Science and Technology 3, Q84 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laboutin, O., Lo, CF., Kao, CK. et al. MOCVD of GaN-based HEMT structures on 8 inch silicon substrates. MRS Online Proceedings Library 1736, 49–58 (2014). https://doi.org/10.1557/opl.2015.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.100

Navigation