Log in

Vapor-assisted solution process for perovskite materials and solar cells

  • Perovskite Photovoltaics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Hybrid organic–inorganic perovskites (e.g., CH3NH3PbX3, X represents a halide) have been highlighted for various applications, especially as light absorbers in third-generation photovoltaics. In the pursuit of low-cost and efficient perovskite solar technology, it is crucial to develop a facile method to fabricate conformal, compact perovskite films in an inexpensive and reproducible manner. Here, we report high-quality perovskite films controllably deposited via a facile low-temperature (<150°C) vapor-assisted solution process (VASP). Key steps include deposition of the inorganic framework by solution first, followed by a subsequent in situ reaction between the inorganic species and the desired organic vapor. The VASP approach differs from other conventional solution processing techniques because it retards nucleation and enables vigorous reorganization for film growth, with an absence of solvation, hydration, and undesirable structural transitions. Facilitated by excellent film quality, perovskite materials enable a power-conversion efficiency of ∼16.8% in the planar configuration of a solar cell. This method provides a simple approach to perovskite film preparation and paves the way toward high reproducibility and mass production of high-quality absorber films for solar devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. American Physical Society, “April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell,” APS News 18 (4), (2009).

  2. G. Turner, Global Renewable Energy Market Outlook 2013, Bloomberg New Energy Finance; https://www.bnef.com/insightdownload/7526/pdf (accessed April 11, 2014).

  3. National Renewable Energy Laboratory, Best Research-Cell Efficiencies; http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.

  4. H.J. Snaith, J. Phys. Chem. Lett. 4, 3623 (2013).

    Google Scholar 

  5. N.-G. Park, Mater. Today 18, 65 (2015).

    Google Scholar 

  6. M. Gratzel, Nat. Mater. 13, 838 (2014).

    Google Scholar 

  7. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506 (2014).

    Google Scholar 

  8. Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today (forthcoming).

  9. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).

    Google Scholar 

  10. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, Nanoscale 3, 4088 (2011).

    Google Scholar 

  11. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, S ci. Rep. 2, 591 (2012).

    Google Scholar 

  12. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Adv. Mater. 25, 3727 (2013).

    Google Scholar 

  13. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 136, 622 (2013).

    Google Scholar 

  14. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013).

    Google Scholar 

  15. D. Liu, T.L. Kelly, Nat. Photonics 8, 133 (2014).

    Google Scholar 

  16. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012).

    Google Scholar 

  17. O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Nat. Photonics 8, 128 (2014).

    Google Scholar 

  18. W.-J. Yin, T. Shi, Y. Yan, Adv. Mater. 26, 4653 (2014).

    Google Scholar 

  19. W.-J. Yin, T. Shi, Y. Yan, J. Phys. Chem. C 119, 5253 (2015).

    Google Scholar 

  20. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316 (2013).

    Google Scholar 

  21. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542 (2014).

    Google Scholar 

  22. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Nat. Mater. 13, 897 (2014).

    Google Scholar 

  23. J.-W. Lee, D.-J. Seol, A.-N. Cho, N.-G. Park, Adv. Mater. 26, 4991 (2014).

    Google Scholar 

  24. Q. Wang, Y. Shao, Q. Dong, Z. **ao, Y. Yuan, J. Huang, Energy Environ. Sci. 7, 2359 (2014).

    Google Scholar 

  25. Z. **ao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Energy Environ. Sci. 7, 2619 (2014).

    Google Scholar 

  26. M. **ao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, L. Spiccia, Angew. Chem. Int. Ed. 126, 10056 (2014).

    Google Scholar 

  27. K. Yan, M. Long, T. Zhang, Z. Wei, H. Chen, S. Yang, J. Xu, J. Am. Chem. Soc. 137, 4460 (2015).

    Google Scholar 

  28. W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, H.J. Snaith, Nat. Commun. 6, 6142 (2015).

    Google Scholar 

  29. M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang, Y. Qi, J. Mater. Chem. A 2, 18742 (2014).

    Google Scholar 

  30. S.D. Stranks, P.K. Nayak, W. Zhang, T. Stergiopoulos, H.J. Snaith, Angew. Chem. Int. Ed. 54, 3240 (2015).

    Google Scholar 

  31. T.-B. Song, Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang, J. Mater. Chem. A 3, 9032 (2015).

    Google Scholar 

  32. P. Luo, Z. Liu, W. **a, C. Yuan, J. Cheng, Y. Lu, ACS Appl. Mater. Interfaces 7, 2708 (2015).

    Google Scholar 

  33. T. Du, N. Wang, H. Chen, H. Lin, H. He, ACS Appl. Mater. Interfaces 7, 3382 (2015).

    Google Scholar 

  34. W. Zhu, T. Yu, F. Li, C. Bao, H. Gao, Y. Yi, J. Yang, G. Fu, X. Zhou, Z. Zou, Nanoscale 7, 5427 (2015).

    Google Scholar 

  35. F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 16411 (2014).

    Google Scholar 

  36. J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, Y. Yang, Appl. Phys. Lett. 105, 183902 (2014).

    Google Scholar 

  37. Y. Li, J.K. Cooper, R. Buonsanti, C. Giannini, Y. Liu, F.M. Toma, I.D. Sharp, J. Phys. Chem. Lett. 6, 493 (2015).

    Google Scholar 

Download references

Acknowledgment

The authors sincerely thank Nicholas De Marco for his assistance in editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan** Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Chen, Q. & Yang, Y. Vapor-assisted solution process for perovskite materials and solar cells. MRS Bulletin 40, 667–673 (2015). https://doi.org/10.1557/mrs.2015.171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.171

Navigation