Log in

Challenges and opportunities at the nexus of energy, water, and food: A perspective from the southwest United States

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Large regions of the United States (and the world) face “situational scarcities” of water that arises from energy extraction and use, agricultural practices, expanding urban populations, and poorly integrated water policies.

Creating “fit-for-purpose” water from suboptimal sources will require new materials and a new understanding of the separation of contaminants from complex aqueous media.

We review here scientific, technological, and societal challenges at the nexus of energy, water, and food. We focus on specific examples of energy and water stress in the southwestern United States and technological routes to new sources of water. Situational scarcities of water are increasing worldwide because of the reliance on uncertain water sources, coupled with expanding populations, expanded agricultural uses of water, and water and energy use policies that have not always been effectively integrated. This review is framed using the outcomes of recent National Science Foundation workshops focusing on the Energy/Water/Food Nexus and from other recent U.S. Department of Energy workshops focused on the Energy/Water nexus. Water-stressed regions, even after extensive conservation measures, may need new supplies of water that come from less than optimal sources. A basic understanding of the separation of water from complex aqueous solutions along with new materials, distributed and publically accepted technologies and unit operations, underpin the future production of “fit-for-purpose” water. Regional test beds are required that are small and provide for simultaneous control of a number of variables, yet large enough to approximate real communities. Solutions to these problems represent opportunities for innovation and creation of economically viable, resilient communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Moniz E.J., Knotek M., and Orr F.: U.S. Department of energy quadrennial technology review—An assessment of energy technologies and research opportunities, 2015. Available at: https://www.energy.gov/sites/prod/files/2015/09/f26/Quadrennial-Technology-Review-2015_0.pdf (accessed March 5, 2018).

    Google Scholar 

  2. Basic Research Needs for Energy and Water: Science to Enable Energy-Efficient Clean Water and Water-efficient Energy—Department of Energy—Office of Science (2017). Available at: https://science.energy.gov/~/media/bes/pdf/reports/2017/BRN_Energy_Water_rpt.pdf (accessed March 22, 2018).

    Google Scholar 

  3. Bauer D.: Department of Energy’s Water-Energy Technology Team—The Water-Energy Nexus: Challenges and Opportunities (2014). Available at: https://www.energy.gov/sites/prod/files/2014/07/f17/Water Energy Nexus Full Report July 2014.pdf (accessed November 23, 2017).

    Google Scholar 

  4. Department of Energy, U.S.; Environmental Protection Agency, U.S.; National Science Foundation, U.S.: Energy Positive Water Resource Recovery Workshop Report (2015). Available at: http://www.energy.gov/sites/prod/files/2015/10/f27/epwrr_workshop_report.pdf (accessed November 22, 2017).

    Google Scholar 

  5. Armstrong N.R., Antin P., Barnhart A., Betterton E., Giacomelli G., Guerrero L., Ogden K., Patten K., Poulton M., Reynolds S., and Snyder S.: Enabling Resiliency in Energy, Water & Food Systems or Society—Addressing the Scientific, Technological, and Societal Challenges of the Energy, Water, and Food Nexus - Executive Summary (2014). Available at: http://energywaterfoodnexus.wordpress.com/ (accessed November 22, 2017).

    Google Scholar 

  6. Keairns D.L., Darton R.C., and Irabien A.: The energy–water–food nexus. Annu. Rev. Chem. Biomol. 7, 239–262 (2016).

    CAS  Google Scholar 

  7. Prabhu J.: Frugal innovation: Doing more with less for more. Philos. Trans. R. Soc., A 375, 20160372 (2017).

    Google Scholar 

  8. Laugs G.A.H. and Moll H.C.: A review of the bandwidth and environmental discourses of future energy scenarios: Shades of green and gray. Renew. Sustain. Energy Rev. 67, 520–530 (2017).

    Google Scholar 

  9. Lal R.: Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energy Secur. 5, 239–251 (2016).

    Google Scholar 

  10. Krane J.: Climate change and fossil fuel: An examination of risks for the energy industry and producer states. MRS Energy Sustain. 4, E2, doi.org/10.1557/mre.2017.3 (2017).

  11. Glennon R.: Unquenchable: America’s Water Crisis and What to do about it (Island Press, Washington, DC, 2009).

    Google Scholar 

  12. Evans P.: Center for Global Enterprise, G. E. Resilience: Global Imperatives for 2013 and Beyond (2013). Available at: https://www.slideshare.net/Oxford99/mesh-evans-april-25-2013 (accessed November 22, 2017).

    Google Scholar 

  13. International Energy Agency: World Energy Outlook (2015). Available at: https://www.iea.org/Textbase/npsum/WEO2015SUM.pdf (accessed November 22, 2017).

    Google Scholar 

  14. United States Energy Information Administration Office of Energy Analysis U.S. Department of Energy: Annual Energy Outlook 2016 with Projections to 2040 (2016); pp. IF23–IF27. Available at: https://www.eia.gov/outlooks/aeo/pdf/0383(2016).pdf (accessed November 22, 2017).

    Google Scholar 

  15. Gassert F., Landis M., Luck M., Reig P., and Shiao T.: Aqueduct Global Maps 2.1 (World Resources Institute, Washington, DC, 2014). Working paper. Available at: http://www.wri.org/publication/aqueduct-metadata-global (accessed November 23, 2017).

    Google Scholar 

  16. Imbrogno J. and Belfort G.: Membrane desalination: Where are we, and what can we learn from fundamentals? Annu. Rev. Chem. Biomol. 7, 29–64 (2016).

    CAS  Google Scholar 

  17. Wuebbles D.J., Fahey D.W., Hibbard K.A., Dokken D.J., Stewart B.C., Maycock T.K., and USGCRP, 2017: Climate Science Special Report: Fourth National Climate Assessment, Vol. I (U.S. Global Change Research Program, Washington, DC, USA, 2017); pp. 232–239.

    Google Scholar 

  18. United States Energy Information Administration: Monthly Energy Review–July 2017 (2017); p. 16. Available at: http://www.eia.gov/mer (accessed November 22, 2017).

    Google Scholar 

  19. Baker E., Fowlie M., Lemoine D., and Reynolds S.S.: The economics of solar electricity. Annu. Rev. Resour. Econ. 5, 387–426 (2013).

    Google Scholar 

  20. United States Energy Information Administration: Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2017 (2017). Available at: http://www.eia.gov/outlooks/aeo/index.cfm (accessed November 22, 2017).

    Google Scholar 

  21. Goldthau A.: The G20 must govern the shift to low-carbon energy. Nature 546, 203–205 (2017).

    CAS  Google Scholar 

  22. The G20 Sustainability Working Group: G20 Hamburg Climate and Energy Action Plan for Growth (2017). Available at: https://www.g20.org/Content/DE/_Anlagen/G7_G20/2017-g20-climate-and-energy-en.pdf?__blob=publicationFile&v=4 (accessed November 22, 2017).

    Google Scholar 

  23. Averyt K., Macknick J., Rogers J., Madden N., Fisher J., Meldrum J., and Newmark R.: Water use for electricity in the United States: An analysis of reported and calculated water use information for 2008. Environ. Res. Lett. 8, 015001 (2013).

    Google Scholar 

  24. Dodder R.S., Barnwell J.T., and Yelverton W.H.: Scenarios for low carbon and low water electric power plant operations: Implications for upstream water use. Environ. Sci. Technol. 50, 11460–11470 (2016).

    CAS  Google Scholar 

  25. Pacsi A.P., Sanders K.T., Webber M.E., and Allen D.T.: Spatial and temporal impacts on water consumption in Texas from shale gas development and use. ACS Sustain. Chem. Eng. 2, 2028–2035 (2014).

    CAS  Google Scholar 

  26. Arent D., Logan J., Macknick J., Boyd W., Medlock K., O’Sullivan F., Edmonds J., Clarke L., Huntington H., Heath G., Statwick P., and Bazilian M.: A review of water and greenhouse gas impacts of unconventional natural gas development in the United States. MRS Energy Sustain. 2, E4, doi.org/10.1557/mre.2015.5 (2015).

  27. McMahon J.E. and Price S.K.: Water and energy interactions. Annu. Rev. Env. Resour. 36, 163–191 (2011).

    Google Scholar 

  28. Peer R.A.M. and Sanders K.T.: Characterizing cooling water source and usage patterns across US thermoelectric power plants: A comprehensive assessment of self-reported cooling water data. Environ. Res. Lett. 11, 124030 (2016).

    Google Scholar 

  29. Sanders K.T.: Critical review: Uncharted waters? The future of the electricity-water nexus. Environ. Sci. Technol. 49, 51–66 (2015).

    CAS  Google Scholar 

  30. Finley J.W. and Seiber J.N.: The nexus of food, energy, and water. J. Agric. Food Chem. 62, 6255–6262 (2014).

    CAS  Google Scholar 

  31. Zhang Q.F.: Strategies for develo** green super rice. Proc. Natl. Acad. Sci. U. S. A. 104, 16402–16409 (2007).

    CAS  Google Scholar 

  32. Tester M. and Langridge P.: Breeding technologies to increase crop production in a changing world. Science 327, 818–822 (2010).

    CAS  Google Scholar 

  33. Jacquemin J., Bhatia D., Singh K., and Wing R.A.: The International Oryza Map Alignment Project: Development of a genus-wide comparative genomics platform to help solve the 9 billion-people question. Curr. Opin. Plant Biol. 16, 147–156 (2013).

    CAS  Google Scholar 

  34. Ishii M., Sase S., Moriyama H., Okushima L., Ikeguchi A., Hayashi M., Kurata K., Kubota C., Kacira M., and Giacomelli G.A.: Controlled environment agriculture for effective plant production systems in a semiarid greenhouse. Jpn. Agric. Res. Q. 50, 101–113 (2016).

    Google Scholar 

  35. Giacomelli G., Kacira M., Furfaro R., Patterson R.L., and Sadler P.: Plant production, energy balance and monitoring-control-telepresence in a recirculating hydroponic vegetable crop production system: Prototype lunar greenhouse. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes, Vol. 1107, DePascale S., Jiang W.J., and Connellan G., eds. (Acta Horticulturae, Brisbane, Australia, 2015); pp. 52–58.

    Google Scholar 

  36. Boscheri G., Kacira M., Patterson L., Giacomelli G., Sadler P., Furfaro R., Lobascio C., Lamantea M., and Grizzaffi L.: Modified energy cascade model adapted for a multicrop Lunar greenhouse prototype. Adv. Space Res. 50, 941–951 (2012).

    Google Scholar 

  37. Larsen T.A., Hoffmann S., Luthi C., Truffer B., and Maurer M.: Emerging solutions to the water challenges of an urbanizing world. Science 352, 928–933 (2016).

    CAS  Google Scholar 

  38. Glennon R. and Taylor C.: Desalination versus duct tape: (Dis)incentives to securing water supplies. J. Am. Water Works Assoc. 108, 56–63 (2016).

    Google Scholar 

  39. Glennon R.: The Disconnect between Water Law and Hydrology. In Arizona Water Policy: Management Innovations in an Urbanizing, Arid Region, Colby B.G. and Jacobs K.L., eds. (Resources for the Future Inc., Washington, DC, 2007).

    Google Scholar 

  40. Cayan D.R., Das T., Pierce D.W., Barnett T.P., Tyree M., and Gershunov A.: Future dryness in the southwest US and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. U. S. A. 107, 21271–21276 (2010).

    CAS  Google Scholar 

  41. Megdal S.B., Gerlak A.K., Huang L.Y., Delano N., Varady R.G., and Petersen-Perlman J.D.: Innovative approaches to collaborative groundwater governance in the United States: Case studies from three high-growth regions in the sun belt. Environ. Manag. 59, 718–735 (2017).

    Google Scholar 

  42. Megdal S.B., Eden S., and Shamir E.: Water governance, stakeholder engagement, and sustainable water resources management. Water 9, 190 (2017).

    Google Scholar 

  43. Eden S., Scott C.A., Lamberton M.I., and Megdal S.B.: Water-energy interdependencies and the Central Arizona Project. In The Water-Energy Nexus in the American West, Kenney D.S. and Wilkinson R., eds. (Edward Elgar, Northhampton, MA, 2011); pp. 109–122.

    Google Scholar 

  44. Kummu M., de Moel H., Ward P.J., and Varis O.: How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS One 6, e20578 (2011).

    CAS  Google Scholar 

  45. Fulton J. and Cooley H.: The water footprint of California’s energy system, 1990–2012. Environ. Sci. Technol. 49, 3314–3321 (2015).

    CAS  Google Scholar 

  46. Copeland C. and Carter N.: Energy water nexus: The water sector’s energy use. Congr. Res. Serv. Rev. (2017). Available at: https://fas.org/sgp/crs/misc/R43200.pdf (accessed November 22, 2017).

    Google Scholar 

  47. The Central Arizona Project (2017). Available at: http://www.cap-az.com/about-us/system-map (accessed December 27, 2017).

  48. Wilson M.C., Li X.Y., Ma Y.J., Smith A.T., and Wu J.G.: A review of the economic, social, and environmental impacts of China’s South–North water transfer project: A sustainability perspective. Sustainability 9, 1489 (2017).

    Google Scholar 

  49. Safeeq M., Shukla S., Arismendi I., Grant G.E., Lewis S.L., and Nolin A.: Influence of winter season climate variability on snow-precipitation ratio in the western United States. Int. J. Climatol. 36, 3175–3190 (2016).

    Google Scholar 

  50. Sternberg T.: Water megaprojects in deserts and drylands. Int. J. Water Resour. Dev. 32, 301–320 (2016).

    Google Scholar 

  51. Weiser M.: How the Colorado River’s Future Depends on the Salton Sea. Water Deeply (2017). Available at: https://www.newsdeeply.com/water/community/2017/05/16/how-the-colorado-rivers-future-depends-on-the-salton-sea (accessed December 4, 2017).

    Google Scholar 

  52. Central Basin Municipal Water District: Stretching the Colorado River (2017). Available at: https://www.centralbasin.org/blog/2014/02/14/stretching-colorado-river (accessed December 4, 2017).

    Google Scholar 

  53. Cohen R. and Nelson B.: Energy Down the Drain—The Hidden Costs of California’s Water Supply (Natural Resources Defense Council Pacific Institute, Oakland, California, 2004).

    Google Scholar 

  54. It’s Not Just A California Drought Problem, It’s A Problem With Our Whole Food System: Part 2 of 3 (2016). Available at: http://trustourfood.com/2016/07/04/its-not-just-a-california-drought-problem-its-a-problem-with-our-whole-food-system/ (accessed November 22, 2017).

  55. White D.D., Keeler L.W., Wiek A., and Larson K.L.: Envisioning the future of water governance: A survey of central Arizona water decision makers. Environ. Pract. 17, 25–35 (2015).

    Google Scholar 

  56. Peacock W.: Energy and Cost Required to Lift or Pressurize Water (University of California Cooperative Extension, Tulare County, 1996). Available at: http://cetulare.ucanr.edu/files/82040.pdf (accessed November 22, 2017).

    Google Scholar 

  57. The Energy-Water Nexus Interlinked Resources That are Vital for Economic Growth and Sustainability: An Energy 20/20 White Paper May 2014—U.S.: Senator Lisa Murkowski 113th Congress, 2014. Available at: https://www.energy.senate.gov/public/index.cfm/files/serve?File_id=9d529812-659b-43a1-a2d1-ef0e67894636 (accessed March 5, 2018).

    Google Scholar 

  58. Wakeel M., Chen B., Hayat T., Alsaedi A., and Ahmad B.: Energy consumption for water use cycles in different countries: A review. Appl. Energy 178, 868–885 (2016).

    Google Scholar 

  59. Plappally A.K. and Lienhard J.H.: Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew. Sustain. Energy Rev. 16, 4818–4848 (2012).

    Google Scholar 

  60. Hurlbut D.J., Haase S., Turchi C.S., and Burman K.: Navajo generating station and clean-energy alternatives: Options for renewables. Technical Report NREL/TP-6A20-54706, 2012.

    Google Scholar 

  61. Ault T.R., Mankin J.S., Cook B.I., and Smerdon J.E.: Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv. 2, e1600873 (2016).

    Google Scholar 

  62. Burnham M., Ma Z., Endter-Wada J., and Bardsley T.: Water management decision making in the face of multiple forms of uncertainty and risk. J. Am. Water Resour. Assoc. 52, 1366–1384 (2016).

    Google Scholar 

  63. Meixner T., Manning A.H., Stonestrom D.A., Allen D.M., Ajami H., Blasch K.W., Brookfield A.E., Castro C.L., Clark J.F., Gochis D.J., Flints A.L., Neff K.L., Niraula R., Rodell M., Scanlon B.R., Singha K., and Walvoord M.A.: Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534, 124–138 (2016).

    Google Scholar 

  64. Bausch J.C., Eakin H., Smith-Heisters S., York A.M., White D.D., Rubinos C., and Aggarwal R.M.: Development pathways at the agriculture-urban interface: The case of Central Arizona. Agric. Hum. Val. 32, 743–759 (2015).

    Google Scholar 

  65. Wilder M., Liverman D., Bellante L., and Osborne T.: Southwest climate gap: Poverty and environmental justice in the US Southwest. Local Environ. 21, 1332–1353 (2016).

    Google Scholar 

  66. Magee D.: Engineering earth, chapter 85-moving the river? China’s South–North Water Transfer Project. In Engineering Earth, Brunn S.D., ed. (Springer Science+Business Media, Berlin/Heidelberg, Germany, 2011); pp. 1499–1514.

    Google Scholar 

  67. WWAP (United Nations World Water Assessment Programme). 2014: The United Nations World Water Development Report 2014: Water and Energy (UNESCO, Paris, 2014). Available at: http://unesdoc.unesco.org/images/0022/002257/225741E.pdf (accessed November 22, 2017).

    Google Scholar 

  68. Scott C.A., Kurian M., and Wescoat J.L.: The water-energy-food nexus: Enhancing adaptive capacity to complex global challenges. In Governing the Nexus: Water, Soil and Waste Resources Considering Global Change, Kurian M. and Ardakanian R., eds. (Springer International Publishing, Cham, 2015); pp. 15–38.

    Google Scholar 

  69. Shannon M.A., Bohn P.W., Elimelech M., Georgiadis J.G., Marinas B.J., and Mayes A.M.: Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Google Scholar 

  70. Crittenden J.C., Trussell R.R., Hand D.W., Howe K.J., and Tchobanogious G.: Water Treatment Principles and Design, 3rd ed. (John Wiley & Sons, Hoboken, New Jersey, 2016).

    Google Scholar 

  71. Cui X.C., Zhou D.D., Fan W., Huo M.X., Crittenden J.C., Yu Z.S., Ju P.F., and Wang Y.: The effectiveness of coagulation for water reclamation from a wastewater treatment plant that has a long hydraulic and sludge retention times: A case study. Chemosphere 157, 224–231 (2016).

    CAS  Google Scholar 

  72. Elimelech M. and Phillip W.A.: The future of seawater desalination: Energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Google Scholar 

  73. Rosenblum J., Nelson A.W., Ruyle B., Schultz M.K., Ryan J.N., and Linden K.G.: Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well. Sci. Total Environ. 596, 369–377 (2017).

    Google Scholar 

  74. Meng M., Chen M., and Sanders K.T.: Evaluating the feasibility of using produced water from oil and natural gas production to address water scarcity in California’s Central Valley. Sustainability 8, 1318 (2016).

    Google Scholar 

  75. Lammers P.J., Huesemann M., Boeing W., Anderson D.B., Arnold R.G., Bai X.M., Bhole M., Brhanavan Y., Brown L., Brown J., Brown J.K., Chisholm S., Downes C.M., Fulbright S., Ge Y.F., Holladay J.E., Ketheesan B., Khopkar A., Koushik A., Laur P., Marrone B.L., Mott J.B., Nirmalakhandan N., Ogden K.L., Parsons R.L., Polle J., Ryan R.D., Samocha T., Sayre R.T., Seger M., Selvaratnam T., Sui R.X., Thomasson A., Unc A., Van Voorhies W., Waller P., Yao Y., and Olivares J.A.: Review of the cultivation program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Res. 22, 166–186 (2017).

    Google Scholar 

  76. Stillwell A.S. and Webber M.E.: Predicting the specific energy consumption of reverse osmosis desalination. Water 8, 601 (2016).

    Google Scholar 

  77. Scherson Y.D. and Criddle C.S.: Recovery of freshwater from wastewater: Upgrading process configurations to maximize energy recovery and minimize residuals. Environ. Sci. Technol. 48, 8420–8432 (2014).

    CAS  Google Scholar 

  78. Puyol D., Batstone D., Hulsen T., Astals S., Peces M., and Kromer J.O.: Resource recovery from wastewater by biological technologies: Opportunities, challenges, and prospects. Front. Microbiol. 7, 998 (2017).

    Google Scholar 

  79. Tong T.Z. and Elimelech M.: The global rise of zero liquid discharge for wastewater management: Drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    CAS  Google Scholar 

  80. Hamadeh A.F., Sharma S.K., and Amy G.: Comparative assessment of managed aquifer recharge versus constructed wetlands in managing chemical and microbial risks during wastewater reuse: A review. J. Desalination Water Reuse 4, 1–8 (2014).

    CAS  Google Scholar 

  81. Page D., Vanderzalm J., Dillon P., Gonzalez D., and Barry K.: Stormwater quality review to evaluate treatment for drinking water supply via managed aquifer recharge. Water Air Soil Pollut. 227, 322 (2016).

    Google Scholar 

  82. Fournier E.D., Keller A.A., Geyer R., and Frew J.: Investigating the energy-water usage efficiency of the reuse of treated municipal wastewater for artificial groundwater recharge. Environ. Sci. Technol. 50, 2044–2053 (2016).

    CAS  Google Scholar 

  83. Gober P., Sampson D.A., Quay R., White D.D., and Chow W.T.L.: Urban adaptation to mega-drought: Anticipatory water modeling, policy, and planning for the urban Southwest. Sustain. Cities Soc. 27, 497–504 (2016).

    Google Scholar 

  84. Niraula R., Meixner T., Dominguez F., Bhattarai N., Rodell M., Ajami H., Gochis D., and Castro C.: How might recharge change under projected climate change in the Western U.S.? Geophys. Res. Lett. 44, 2017GL075421 (2017).

    Google Scholar 

  85. Werber J.R., Osuji C.O., and Elimelech M.: Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    CAS  Google Scholar 

  86. Werber J.R., Deshmukh A., and Elimelech M.: The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).

    CAS  Google Scholar 

  87. Park H.B., Kamcev J., Robeson L.M., Elimelech M., and Freeman B.D.: Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Google Scholar 

  88. Lee A., Elam J.W., and Darling S.B.: Membrane materials for water purification: Design, development, and application. Environ. Sci.: Water Res. Technol. 2, 17–42 (2016).

    CAS  Google Scholar 

  89. Yechiel A. and Shevah Y.: Optimization of energy costs for SWRO desalination plants. Desalin. Water Treat. 46, 304–311 (2012).

    CAS  Google Scholar 

  90. Cooley H. and Phurisamban R.: The Cost of Alternative Water Supply and Efficiency Options in California (Pacific Institute, Oakland, California, 2016); pp. 13–14.

    Google Scholar 

  91. Prante J.L., Ruskowitz J.A., Childress A.E., and Achilli A.: RO-PRO desalination: An integrated low-energy approach to seawater desalination. Appl. Energy 120, 104–114 (2014).

    CAS  Google Scholar 

  92. Efraty A., Barak R.N., and Gal Z.: Closed circuit desalination series no-2: New affordable technology for sea water desalination of low energy and high flux using short modules without need of energy recovery. Desalin. Water Treat. 42, 189–196 (2012).

    CAS  Google Scholar 

  93. Efraty A., Barak R.N., and Gal Z.: Closed circuit desalination—A new low energy high recovery technology without energy recovery. Desalin. Water Treat. 31, 95–101 (2011).

    CAS  Google Scholar 

  94. Cath T.Y., Hancock N.T., Lundin C.D., Hoppe-Jones C., and Drewes J.E.: A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water. J. Membr. Sci. 362, 417–426 (2010).

    CAS  Google Scholar 

  95. Cath T.Y., Childress A.E., and Elimelech M.: Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006).

    CAS  Google Scholar 

  96. Loeb S. and Mehta G.D.: 2-Coefficient water transport-equation for pressure-retarded osmosis. J. Membr. Sci. 4, 351–362 (1979).

    CAS  Google Scholar 

  97. Blandin G., Verliefde A.R.D., Tang C.Y., and Le-Clech P.: Opportunities to reach economic sustainability in forward osmosis-reverse osmosis hybrids for seawater desalination. Desalination 363, 26–36 (2015).

    CAS  Google Scholar 

  98. Achilli A., Prante J.L., Hancock N.T., Maxwell E.B., and Childress A.E. Experimental results from RO-PRO: A next generation system for low-energy desalination. Environ. Sci. Technol. 48, 6437–6443 (2014).

    CAS  Google Scholar 

  99. Miller D.J., Dreyer D.R., Bielawski C.W., Paul D.R., and Freeman B.D.: Surface modification of water purification membranes. Angew. Chem., Int. Ed. 56, 4662–4711 (2017).

    CAS  Google Scholar 

  100. Wang L.D., Boutilier M.S.H., Kidambi P.R., Jang D., Hadjiconstantinou N.G., and Karnik R.: Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    CAS  Google Scholar 

  101. Lv Y., Zhang C., He A., Yang S.J., Wu G.P., Darling S.B., and Xu Z.K.: Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment. Adv. Funct. Mater. 27, 1700251 (2017).

    Google Scholar 

  102. Bai L.M., Liang H., Crittenden J., Qu F.S., Ding A., Ma J., Du X., Guo S.D., and Li G.B.: Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. J. Membr. Sci. 492, 400–411 (2015).

    CAS  Google Scholar 

  103. Liu B.C., Chen C., Li T., Crittenden J., and Chen Y.S.: High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. J. Membr. Sci. 445, 66–75 (2013).

    CAS  Google Scholar 

  104. Mohammad A.W., Teow Y.H., Ang W.L., Chung Y.T., Oatley-Radcliffe D.L., and Hilal N.: Nanofiltration membranes review: Recent advances and future prospects. Desalination 356, 226–254 (2015).

    CAS  Google Scholar 

  105. Rao G.Y., Hiibel S.R., and Childress A.E.: Simplified flux prediction in direct-contact membrane distillation using a membrane structural parameter. Desalination 351, 151–162 (2014).

    CAS  Google Scholar 

  106. Rao G.Y., Hiibel S.R., Achilli A., and Childress A.E.: Factors contributing to flux improvement in vacuum-enhanced direct contact membrane distillation. Desalination 367, 197–205 (2015).

    CAS  Google Scholar 

  107. Gustafson R.D., Murphy J.R., and Achilli A.: A stepwise model of direct contact membrane distillation for application to large-scale systems: Experimental results and model predictions. Desalination 378, 14–27 (2016).

    CAS  Google Scholar 

  108. Camacho L.M., Dumee L., Zhang J.H., Li J.D., Duke M., Gomez J., and Gray S.: Advances in membrane distillation for water desalination and purification applications. Water 5, 94–196 (2013).

    Google Scholar 

  109. Zhang P.P., Li J., Lv L.X., Zhao Y., and Qu L.T.: Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 11, 5087–5093 (2017).

    CAS  Google Scholar 

  110. Miles A., Cocilovo B., Wheelwright B., Pan W., Tweet D., and Norwood R.A.: Designing spectrum-splitting dichroic filters to optimize current-matched photovoltaics. Appl. Opt. 55, 1849–1853 (2016).

    CAS  Google Scholar 

  111. Stalcup T., Angel R., Strittmatter P., Whiteside A., Geary A., Sodari F., Rademacher M., Didato N., and Ayala S.: REhnu dish-based CPV: Module performance and planned 100 kW plant. In 12th International Conference on Concentrator Photovoltaic Systems, Wiesenfarth M., Bett A., and Muller M., eds.; AIP Conference Proceedings, Vol. 1766 (American Institute of Physics, College Park, Maryland, 2016); p. 020006.

    Google Scholar 

  112. Ravisankar Vishnu A., Seaman R., Mirchandani S., Arnold Robert G., and Ela Wendell P.: Solar-driven membrane distillation demonstration in Leupp, Arizona. Rev. Environ. Health 31, 79 (2016).

    Google Scholar 

  113. Hamed I.: The evolution and versatility of microalgal biotechnology: A review. Compr. Rev. Food Sci. Food Saf. 15, 1104–1123 (2016).

    Google Scholar 

  114. Markou G. and Nerantzis E.: Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 31, 1532–1542 (2013).

    CAS  Google Scholar 

  115. Delrue F., Alvarez-Diaz P.D., Fon-Sing S., Fleury G., and Sassi J.F.: The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies 9, 132 (2016).

    Google Scholar 

  116. Pires J., Alvim-Ferraz M., Martins F., and Simoes M.: Wastewater treatment to enhance the economic viability of microalgae culture. Environ. Sci. Pollut. Res. 20, 5096–5105 (2013).

    CAS  Google Scholar 

  117. Jones L.A., Ogden K.L., and Jia F.: Comparative study of biosorption of copper(II) by lipid extracted and non-extracted chlorella sorokiniana. Clean. - Soil, Air, Water 43, 73–78 (2015).

    CAS  Google Scholar 

  118. Ogden K.L.: Algae as a bio-feedstock. Chem. Eng. Prog. 110, 63–66 (2014).

    Google Scholar 

  119. Lee Y., Gerrity D., Lee M., Gamage S., Pisarenko A., Trenholm R.A., Canonica S., Snyder S.A., and von Gunten U.: Organic contaminant abatement in reclaimed water by UV/H2O2 and a combined process consisting of O3/H2O2 followed by UV/H2O2: Prediction of abatement efficiency, energy consumption, and byproduct formation. Environ. Sci. Technol. 50, 3809–3819 (2016).

    CAS  Google Scholar 

  120. Guo X., Minakata D., and Crittenden J.: On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes. Environ. Sci. Technol. 49, 9230–9236 (2015).

    CAS  Google Scholar 

  121. Park M., Anumol T., and Snyder S.A.: Modeling approaches to predict removal of trace organic compounds by ozone oxidation in potable reuse applications. Environ. Sci.: Water Res. Technol. 1, 699–708 (2015).

    CAS  Google Scholar 

  122. Park M., Anumol T., Daniels K.D., Wu S.M., Ziska A.D., and Snyder S.A.: Predicting trace organic compound attenuation by ozone oxidation: Development of indicator and surrogate models. Water Res. 119, 21–32 (2017).

    CAS  Google Scholar 

  123. Loeb S., Hofmann R., and Kim J.H.: Beyond the pipeline: Assessing the efficiency limits of advanced technologies for solar water disinfection. Environ. Sci. Technol. Lett. 3, 73–80 (2016).

    CAS  Google Scholar 

  124. Gerrity D. and Snyder S.: Review of ozone for water reuse applications: Toxicity, regulations, and trace organic contaminant oxidation. Ozone: Sci. Eng. 33, 253–266 (2011).

    CAS  Google Scholar 

  125. Fernandez-Castro P., Vallejo M., San Roman M.F., and Ortiz I.: Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. J. Chem. Technol. Biotechnol. 90, 796–820 (2015).

    CAS  Google Scholar 

  126. Crittenden J.C., Trussell R.R., and Hand D.W.: MWH’s Water Treatment: Principles and Design (John Wiley & Sons Inc., Hoboken, New Jersey, 2012).

    Google Scholar 

  127. Crittenden J.C., Hu S.M., Hand D.W., and Green S.A.: A kinetic model for H2O2/UV process in a completely mixed batch reactor. Water Res. 33, 2315–2328 (1999).

    CAS  Google Scholar 

  128. **e R., Meng X., Sun P., Niu J., Jiang W., Bottomley L., Li D., Chen Y., and Crittenden J.: Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Appl. Catal., B 203, 515–525 (2017).

    CAS  Google Scholar 

  129. Cath T.Y., Elimelech M., McCutcheon J.R., McGinnis R.L., Achilli A., Anastasio D., Brady A.R., Childress A.E., Farr I.V., Hancock N.T., Lampi J., Nghiem L.D., **e M., and Yip N.Y.: Standard methodology for evaluating membrane performance in osmotically driven membrane processes. Desalination 312, 31–38 (2013).

    CAS  Google Scholar 

  130. Nosaka Y. and Nosaka A.Y.: Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    CAS  Google Scholar 

  131. Fujishima A., Zhang X.T., and Tryk D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008).

    CAS  Google Scholar 

  132. Negishi R., Naya S-I., and Tada H.: Visible light-driven selective aerobic oxidation of benzylalcohols to benzaldehydes by a Cu(acac)(2)-BiVO4-admicelle three-component heterosupramolecular photocatalyst. J. Phys. Chem. C 119, 11771–11776 (2015).

    CAS  Google Scholar 

  133. Tada H., ** Q., Iwaszuk A., and Nolan M.: Molecular-scale transition metal oxide nanocluster surface-modified titanium dioxide as solar-activated environmental catalysts. J. Phys. Chem. C 118, 12077–12086 (2014).

    CAS  Google Scholar 

  134. Lee A., Libera J.A., Waldman R.Z., Ahmed A., Avila J.R., Elam J.W., and Darling S.B.: Conformal nitrogen-doped TiO2 photocatalytic coatings for sunlight-activated membranes. Advanced Sustainable Systems 1, UNSP 1600041 (2017).

  135. Zigah D., Rodriguez-Lopez J., and Bard A.J.: Quantification of photoelectrogenerated hydroxyl radical on TiO2 by surface interrogation scanning electrochemical microscopy. Phys. Chem. Chem. Phys. 14, 12764–12772 (2012).

    CAS  Google Scholar 

  136. Yang S.Y., Choi W., and Park H.: TiO2 nanotube array photoelectrocatalyst and Ni–Sb–SnO2 electrocatalyst bifacial electrodes: A new type of bifunctional hybrid platform for water treatment. ACS Appl. Mater. Interfaces 7, 1907–1914 (2015).

    CAS  Google Scholar 

  137. Mehrjouei M., Mueller S., and Moeller D.: A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209–219 (2015).

    CAS  Google Scholar 

  138. Inyang M. and Dickenson E.: The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 134, 232–240 (2015).

    CAS  Google Scholar 

  139. Jimenez-Castaneda M.E. and Medina D.I.: Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water 9, (2017).

  140. Shah A., Shahzad S., Munir A., Nadagouda M.N., Khan G.S., Shams D.F., Dionysiou D.D., and Rana U.A.: Micelles as soil and water decontamination agents. Chem. Rev. 116, 6042–6074 (2016).

    CAS  Google Scholar 

  141. Juwarkar A.A., Nair A., Dubey K.V., Singh S.K., and Devotta S.: Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68, 1996–2002 (2007).

    CAS  Google Scholar 

  142. Sweeney M.W. and Kabouris J.C.: Modeling, instrumentation, automation, and optimization of water resource recovery facilities. Water Environ. Res. 88, 1279–1298 (2016).

    CAS  Google Scholar 

  143. Yu H.W., Anumol T., Park M., Pepper I., Scheideler J., and Snyder S.A.: On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process. Water Res. 81, 250–260 (2015).

    CAS  Google Scholar 

  144. Bourgeois W., Burgess J.E., and Stuetz R.M.: On-line monitoring of wastewater quality: A review. J. Chem. Technol. Biotechnol. 76, 337–348 (2001).

    CAS  Google Scholar 

  145. Hutchins M.G., McGrane S.J., Miller J.D., Hagen-Zanker A., Kjeldsen T.R., Dadson S.J., and Rowland C.S.: Integrated modeling in urban hydrology: Reviewing the role of monitoring technology in overcoming the issue of ‘big data’ requirements. Wiley Interdiscip. Rev.: Water 4, e1177 (2017).

    Google Scholar 

  146. Eggimann S., Mutzner L., Wani O., Schneider M.Y., Spuhler D., de Vitry M.M., Beutler P., and Maurer M.: The potential of knowing more: A review of data-driven urban water management. Environ. Sci. Technol. 51, 2538–2553 (2017).

    CAS  Google Scholar 

  147. Libralato G., Volpi Ghirardini A., and Avezzu F.: How toxic is toxic? A proposal for wastewater toxicity hazard assessment. Ecotoxicol. Environ. Saf. 73, 1602–1611 (2010).

    CAS  Google Scholar 

  148. Lee H. and Tan T.P.: Singapore’s experience with reclaimed water: NEWater. Int. J. Water Resour. Dev. 32, 611–621 (2016).

    Google Scholar 

  149. Benatto G.A.D., Corazza M., Roth B., Schutte F., Rengenstein M., Gevorgyan S.A., and Krebs F.C.: Inside or outside? Linking outdoor and indoor lifetime tests of ITO-free organic photovoltaic devices for greenhouse applications. Energy Technol. 5, 338–344 (2017).

    Google Scholar 

  150. Forberich K., Guo F., Bronnbauer C., and Brabec C.J.: Efficiency limits and color of semitransparent organic solar cells for application in building-integrated photovoltaics. Energy Technol. 3, 1051–1058 (2015).

    CAS  Google Scholar 

  151. Emmott C.J.M., Rohr J.A., Campoy-Quiles M., Kirchartz T., Urbina A., Ekins-Daukes N.J., and Nelson J.: Organic photovoltaic greenhouses: A unique application for semi-transparent PV? Energy Environ. Sci. 8, 1317–1328 (2015).

    CAS  Google Scholar 

  152. Detweiler A.M., Mioni C.E., Hellier K.L., Allen J.J., Carter S.A., Bebout B.M., Fleming E.E., Corrado C., and Prufert-Bebout L.E.: Evaluation of wavelength selective photovoltaic panels on microalgae growth and photosynthetic efficiency. Algal Res. 9, 170–177 (2015).

    Google Scholar 

  153. Corrado C., Leow S.W., Osborn M., Carbone I., Hellier K., Short M., Alers G., and Carter S.A.: Power generation study of luminescent solar concentrator greenhouse. J. Renew. Sustain. Energy 8, 043502 (2016).

    Google Scholar 

  154. Tilman D., Cassman K.G., Matson P.A., Naylor R., and Polasky S.: Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS  Google Scholar 

  155. Allen J. and Nelson M.: Biospherics and biosphere 2, mission one (1991–1993). Ecol. Eng. 13, 15–29 (1999).

    Google Scholar 

  156. Tucson A.: Biosphere 2 launches key watershed experiment. Science 338, 1132 (2012).

    Google Scholar 

  157. Pangle L.A., Kim M., Cardoso C., Lora M., Neto A.A.M., Volkmann T.H.M., Wang Y.D., Troch P.A., and Harman C.J.: The mechanistic basis for storage-dependent age distributions of water discharged from an experimental hillslope. Water Resour. Res. 53, 2733–2754 (2017).

    Google Scholar 

  158. Pangle L.A., DeLong S.B., Abramson N., Adams J., Barron-Gafford G.A., Breshears D.D., Brooks P.D., Chorover J., Dietrich W.E., Dontsova K., Durcik M., Espeleta J., Ferre T.P.A., Ferriere R., Henderson W., Hunt E.A., Huxman T.E., Millar D., Murphy B., Niu G.Y., Pavao-Zuckerman M., Pelletier J.D., Rasmussen C., Ruiz J., Saleska S., Schaap M., Sibayan M., Troch P.A., Tuller M., van Haren J., and Zeng X.B.: The landscape evolution observatory: A large-scale controllable infrastructure to study coupled earth-surface processes. Geomorphology 244, 190–203 (2015).

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the inspiration, and the organizational and logistical support provided by a large group of University of Arizona faculty and staff who helped to make the original Energy, Water, Food workshop at Biosphere 2 possible: Parker Antin, Ardeth Barnhart, Eric Betterton, Gene Giacomelli, Lucio Guerrero, Kim Patten, Mary Poulton, Stanley Reynolds, and Dan Moseke. The participants in this workshop, who came from a variety of national and international universities, government laboratories and industries, listed in Ref. 5, likewise played a key role in creating the perspective for this review. Our perspective was also shaped by the January 2017 DOE workshop, “Basic Research Needs for Energy and Water: Science to Enable Energy-Efficient Clean Water and Water-efficient Energy-Department of Energy-Office of Science.”2

Critical discussions with Mike Knotek, Bill Tumas, David Ginley, David Cahen, Elizabeth Kocs, and Antonio Terrasi helped to shape this review, along with the participation of NA in the “Materials for Energy and Sustainability” school and the “EPS-SIF International School on Energy,” both in Erice, Italy in 2016.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armstrong, N.R., Shallcross, R.C., Ogden, K. et al. Challenges and opportunities at the nexus of energy, water, and food: A perspective from the southwest United States. MRS Energy & Sustainability 5, 1 (2018). https://doi.org/10.1557/mre.2018.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2018.2

Keywords

Navigation