Log in

In situ measurement of bulk modulus and yield response of glassy thin films via confined layer compression

  • Nanomechanics and Testing
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The measurement of thin film mechanical properties free from substrate influence remains one of the outstanding challenges in nanomechanics. Here, a technique based on indentation of a supported film with a flat punch whose diameter is many times the initial film thickness is introduced. This geometry generates a state of confined uniaxial strain for material beneath the punch, allowing direct access to intrinsic stress versus strain response. For simple elastic–plastic materials, this enables material parameters such as elastic modulus, bulk modulus, Poisson’s ratio, and yield stress to be simultaneously determined from a single loading curve. The phenomenon of confined plastic yield has not been previously observed in thin films or homogeneous materials, which we demonstrate here for 170–470 nm thick polystyrene (PS), polymethyl-methacrylate (PMMA) and amorphous Selenium films on silicon. As well as performing full elastic-plastic parameter extraction for these materials at room temperature, we used the technique to study the variation of yield stress in PS to temperatures above the nominal glass transition of 100 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. M. Alcoutlabi and G.B. McKenna: Effects of confinement on material behaviour at the nanometre size scale. J. Phys.: Condens. Matter 17, R461–R524 (2005).

    CAS  Google Scholar 

  2. H.D. Rowland, W.P. King, J.B. Pethica, and G.L.W. Cross: Molecular confinement accelerates deformation of entangled polymers during squeeze flow. 322, Science. 720–724 (2008).

    Article  CAS  Google Scholar 

  3. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

  4. J.B. Pethica, R. Hutchings, and W.C. Oliver: Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 48, 593–606 (1983).

    Article  CAS  Google Scholar 

  5. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50, 23–38 (2002).

    Article  CAS  Google Scholar 

  6. G.M. Pharr and W.C. Oliver: Measurement of thin film mechanical properties using nanoindentation. MRS Bull. 17, 28–33 (1992).

    Article  Google Scholar 

  7. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    Article  CAS  Google Scholar 

  8. C.M. Stafford, C. Harrison, K. Beers, K. Alamgir, E. Amis, M.R. Vanlandingham, H.C. Kim, W. Volksen, R.D. Miller, and E. Simonyi: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545–550 (2004).

    Article  CAS  Google Scholar 

  9. P.A. Connell and G.B. McKenna: Rheological measurements of the thermoviscoelastic response of ultrathin polymer films. Science. 307, 1760–1763 (2005).

    Article  Google Scholar 

  10. G. Mavko, T. Mukerji, and J. Dvorkin: The Rock Physics Handbook (Cambridge University Press, Cambridge, England, 2009); pp. 22–23.

    Book  Google Scholar 

  11. R.O. Davies and A.P.S. Selvadurai: Plasticity and Geomechanics (Cambridge University Press, Cambridge, England, 2005); p. 44.

    Google Scholar 

  12. Z. Ma and K. Ravi-Chandar: Confined compression: A stable homogeneous deformation for constitutive characterization. Exp. Mech. 40, 38–45 (2000).

    Article  CAS  Google Scholar 

  13. K. Ravi-Chandar and Z. Ma: Inelastic deformation in polymers under multiaxial compression. Mech. Time-Dependent Mater. 4, 333–357 (2000).

    Article  CAS  Google Scholar 

  14. G.L.W. Cross, B.S. O’Connell, J.B. Pethica, H. Rowland, and W.P. King: Variable temperature thin film indentation with a flat punch. Rev. Sci. Instrum. 79, 013904 (2008).

    Article  Google Scholar 

  15. A.S. Argon: The Physics of Deformation and Fracture of Polymers (Cambridge University Press, Cambridge, England, 2013); p. 112.

    Book  Google Scholar 

  16. G. Lindsey, R.A. Schapery, M.L. Williams, and A.R. Zak: The triaxial tension failure of viscoelastic materials, Internal report, US Aerospace Research Laboratories. (Pasedena, California, September 1963).

    Book  Google Scholar 

  17. J.W. Kim, G.A. Medvedev, and J.M. Caruthers: Observation of yield in triaxial deformation of glassy polymers. Polymer 54, 2821–2833 (2013).

    Article  CAS  Google Scholar 

  18. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, England, 1985); p. 171.

    Book  Google Scholar 

  19. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115–126 (1970).

    Article  Google Scholar 

  20. R. Quinson, J. Perez, M. Rink, and A. Pavan: Yield criteria for amorphous glassy polymers. J. Mater. Sci. 32, 1371–1379 (1997).

    Article  CAS  Google Scholar 

  21. C.B. Roth: Polymer Glasses (CRC Press, Boca Raton, 2016); pp. 31, 161.

    Book  Google Scholar 

  22. R. Böhmer and C.A. Angell: Elastic and viscoelastic properties of amorphous selenium and identification of the phase transition between ring and chain structures. Phys. Rev. B 48, 5857–5864 (1993).

    Article  Google Scholar 

  23. J. Brandrup, E.H. Immergut, and E.A. Grulke: Polymer handbook (Wiley-Interscience, New Jersey, 1999).

    Google Scholar 

  24. P.H. Mott, J.R. Dorgan, and C.M. Roland: The bulk modulus and Poisson’s ratio of “incompressible” materials. J. Sound Vib. 312, 572–575 (2008).

    Article  Google Scholar 

  25. H. Yoon and G.B. McKenna: Dynamic and temperature dependent response of physical vapor deposited Se in freely standing nanometric thin films. J. Chem. Phys. 144 (2016).

  26. K.M. Bernatz, I. Echeverría, S.L. Simon, and D.J. Plazek. Characterization of the molecular structure of amorphous selenium using recoverable creep compliance measurements. J. Non-Cryst. Solids 307–310, 790–801 (2002).

    Article  Google Scholar 

  27. Online Source: D.R. Stephens, H.C. Heard, and R.N. Schock: High-pressure mechanical properties of polymethylmethacrylate (1972). Available at: https://www.osti.gov/servlets/purl/4249322.

  28. O. Brazil: Deformation and yield of polymer thin films under confinement. Thesis (Trinity College Dublin, Dublin 2, Ireland, 2019).

    Google Scholar 

  29. A. Quach and R. Simha: Pressure-volume-temperature properties and transitions of amorphous polymers; polystyrene and poly(orthomethylstyrene). J. Appl. Phys. 42, 4592–4606 (1971).

    Article  CAS  Google Scholar 

  30. H-J. Oels and G. Rehage: Pressure-volume-temperature measurements on atactic polystyrene. A thermodynamic view. Macromolecules 10, 1036–1043 (1977).

    Article  CAS  Google Scholar 

  31. P.A.O. Connell and G.B. Mckenna: Novel nanobubble inflation method for determining the viscoelastic properties of ultrathin polymer films. Rev. Sci. Instrum. 78, 013901 (2012).

    Article  Google Scholar 

  32. H.D. Rowland, W.P. King, G.L.W. Cross, and J.B. Pethica: Measuring glassy and viscoelastic polymer flow in molecular-scale gaps using a flat punch mechanical probe. ACS Nano 2, 419–428 (2008).

    Article  CAS  Google Scholar 

  33. M.J. Wald, J.M. Considine, and K.T. Turner: Determining the elastic modulus of compliant thin films supported on substrates from flat punch indentation measurements. Exp. Mech. 53, 931–941 (2013).

    Article  Google Scholar 

  34. M.J. Wald, J.M. Considine, and K.T. Turner: Measuring the elastic modulus of soft thin films on substrates. Exp. Appl. Mech. 6, 741–747 (2011).

    Google Scholar 

  35. G.L.W. Cross, B.S. O’Connell, and J.B. Pethica: Influence of elastic strains on the mask ratio in glassy polymer nanoimprint. Appl. Phys. Lett. 86, 1–3 (2005).

    Google Scholar 

Download references

Acknowledgments

We thank John E. Sader and H. Ozgur Ozer for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham L. W. Cross.

Additional information

This article has been corrected since its original publication. An erratum notice detailing these changes was also published (doi: https://doi.org/10.1557/jmr.2020.67)

Supplementary Material

43578_2020_350600010_MOESM1_ESM.docx

In situ measurement of bulk modulus and yield response of glassy thin films via confined layer compression: Supplementary Material: Derivation uniaxial strain deformation constitutive relations for an isotropic elastic-plastic material (approximately 27.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brazil, O., de Silva, J.P., Chowdhury, M. et al. In situ measurement of bulk modulus and yield response of glassy thin films via confined layer compression. Journal of Materials Research 35, 644–653 (2020). https://doi.org/10.1557/jmr.2020.42

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.42

Navigation