Log in

Combinatorial metallurgical synthesis and processing of high-entropy alloys

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) with multiple principal elements open up a practically infinite space for designing novel materials. Probing this huge material universe requires the use of combinatorial and high-throughput synthesis and processing methods. Here, we present and discuss four different combinatorial experimental methods that have been used to accelerate the development of novel HEAs, namely, rapid alloy prototy**, diffusion-multiples, laser additive manufacturing, and combinatorial co-deposition of thin-film materials libraries. While the first three approaches are bulk methods which allow for downstream processing and microstructure adaptation, the latter technique is a thin-film method capable of efficiently synthesizing wider ranges of composition and using high-throughput measurement techniques to characterize their structure and properties. Additional coupling of these high-throughput experimental methodologies with theoretical guidance regarding specific target features such as phase (meta)stability allows for effective screening of novel HEAs with beneficial property profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  Google Scholar 

  3. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).

    Article  Google Scholar 

  4. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    Article  CAS  Google Scholar 

  5. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  6. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  7. W. Zhang, P.K. Liaw, and Y. Zhang: Science and technology in high-entropy alloys. Sci. China Mater. 61, 2 (2018).

    Article  CAS  Google Scholar 

  8. R. Li, P. Liaw, and Y. Zhang: Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater. Sci. Eng., A 707, 668 (2017).

    Article  CAS  Google Scholar 

  9. H. Luo, Z. Li, A.M. Mingers, and D. Raabe: Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 134, 131 (2018).

    Article  CAS  Google Scholar 

  10. H. Luo, Z. Li, and D. Raabe: Hydrogen enhances strength and ductility of an equiatomic high-entropy alloy. Sci. Rep. 7, 9892 (2017).

    Article  Google Scholar 

  11. Z. Li, C.C. Tasan, K.G. Pradeep, and D. Raabe: A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 131, 323 (2017).

    Article  CAS  Google Scholar 

  12. K.G. Pradeep, C.C. Tasan, M.J. Yao, Y. Deng, H. Springer, and D. Raabe: Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Mater. Sci. Eng., A 648, 183 (2015).

    Article  CAS  Google Scholar 

  13. T. Niendorf, T. Wegener, Z. Li, and D. Raabe: Unexpected cyclic stress–strain response of dual-phase high-entropy alloys induced by partial reversibility of deformation. Scr. Mater. 143, 63 (2018).

    Article  CAS  Google Scholar 

  14. S.S. Nene, K. Liu, M. Frank, R.S. Mishra, R.E. Brennan, K.C. Cho, Z. Li, and D. Raabe: Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Sci. Rep. 7, 16167 (2017).

    Article  CAS  Google Scholar 

  15. H. Luo, Z. Li, W. Lu, D. Ponge, and D. Raabe: Hydrogen embrittlement of an interstitial equimolar high-entropy alloy. Corros. Sci. 136, 403 (2018).

    Article  CAS  Google Scholar 

  16. S. Basu, Z. Li, K.G. Pradeep, and D. Raabe: Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy. Front. Mater. 5, 30 (2018).

    Article  Google Scholar 

  17. J.B. Seol, J.W. Bae, Z. Li, J. Chan Han, J.G. Kim, D. Raabe, and H.S. Kim: Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater. 151, 366 (2018).

    Article  CAS  Google Scholar 

  18. H. Springer and D. Raabe: Rapid alloy prototy**: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn–1.2C–x Al triplex steels. Acta Mater. 60, 4950 (2012).

    Article  CAS  Google Scholar 

  19. H. Springer, M. Belde, and D. Raabe: Combinatorial design of transitory constitution steels: Coupling high strength with inherent formability and weldability through sequenced austenite stability. Mater. Des. 90, 1100 (2016).

    Article  CAS  Google Scholar 

  20. J-C. Zhao, X. Zheng, and D.G. Cahill: High-throughput diffusion multiples. Mater. Today 8, 28 (2005).

    Article  CAS  Google Scholar 

  21. J-C. Zhao: Combinatorial approaches as effective tools in the study of phase diagrams and composition–structure–property relationships. Prog. Mater. Sci. 51, 557 (2006).

    Article  Google Scholar 

  22. P. Wilson, R. Field, and M. Kaufman: The use of diffusion multiples to examine the compositional dependence of phase stability and hardness of the Co–Cr–Fe–Mn–Ni high entropy alloy system. Intermetallics 75, 15 (2016).

    Article  CAS  Google Scholar 

  23. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, and R. Banerjee: A combinatorial assessment of Al x CrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).

    Article  CAS  Google Scholar 

  24. A. Ludwig, R. Zarnetta, S. Hamann, A. Savan, and S. Thienhaus: Development of multifunctional thin films using high-throughput experimentation methods. Int. J. Mater. Res. 99, 1144 (2008).

    Article  CAS  Google Scholar 

  25. D. Raabe, C.C. Tasan, H. Springer, and M. Bausch: From high-entropy alloys to high-entropy steels. Steel Res. Int. 86, 1127 (2015).

    Article  CAS  Google Scholar 

  26. Z. Li and D. Raabe: Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater. Chem. Phys. 210, 29 (2018).

    Article  CAS  Google Scholar 

  27. Z. Li, C.C. Tasan, H. Springer, B. Gault, and D. Raabe: Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys. Sci. Rep. 7, 40704 (2017).

    Article  CAS  Google Scholar 

  28. M. Wang, Z. Li, and D. Raabe: In situ SEM observation of phase transformation and twinning mechanisms in an interstitial high-entropy alloy. Acta Mater. 147, 236 (2018).

    Article  CAS  Google Scholar 

  29. Z. Li and D. Raabe: Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 69, 2099 (2017).

    Article  CAS  Google Scholar 

  30. H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, and D. Raabe: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).

    Article  Google Scholar 

  31. D. Ma, B. Grabowski, F. Körmann, J. Neugebauer, and D. Raabe: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).

    Article  CAS  Google Scholar 

  32. M. Friák, T. Hickel, B. Grabowski, L. Lymperakis, A. Udyansky, A. Dick, D. Ma, F. Roters, L-F. Zhu, and A. Schlieter: Methodological challenges in combining quantum-mechanical and continuum approaches for materials science applications. Eur. Phys. J. Plus 126, 101 (2011).

    Article  Google Scholar 

  33. Z. Li, F. Körmann, B. Grabowski, J. Neugebauer, and D. Raabe: Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 136, 262 (2017).

    Article  CAS  Google Scholar 

  34. J-C. Zhao, M.R. Jackson, L.A. Peluso, and L.N. Brewer: A diffusion multiple approach for the accelerated design of structural materials. MRS Bull. 27, 324 (2002).

    Article  CAS  Google Scholar 

  35. J-C. Zhao: Reliability of the diffusion-multiple approach for phase diagram map**. J. Mater. Sci. 39, 3913 (2004).

    Article  CAS  Google Scholar 

  36. D. Misell and C. Stolinski: Scanning Electron Microscopy and X-Ray Microanalysis. A Text for Biologists, Material Scientists and Geologists (Oxford, Pergamon, 1983).

    Book  Google Scholar 

  37. A.J. Schwartz, M. Kumar, B.L. Adams, and D.P. Field: Electron Backscatter Diffraction in Materials Science (Springer, New York, 2000).

    Book  Google Scholar 

  38. D. Dingley: Progressive steps in the development of electron backscatter diffraction and orientation imaging microscopy. J. Microsc. 213, 214 (2004).

    Article  CAS  Google Scholar 

  39. D.B. Williams and C.B. Carter: The Transmission Electron Microscope. Transmission Electron Microscopy (Springer, New York, 1996); p. 3.

    Google Scholar 

  40. B. Fultz and J.M. Howe: Transmission Electron Microscopy and Diffractometry of Materials (Springer Science & Business Media, New York, 2012).

    Google Scholar 

  41. A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2011).

    Book  Google Scholar 

  42. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  43. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  44. J.J. Vlassak and W.D. Nix: A new bulge test technique for the determination of Young’s modulus and Poisson’s ratio of thin films. J. Mater. Res. 7, 3242 (1992).

    Article  CAS  Google Scholar 

  45. S.A.S. Asif, K.J. Wahl, R.J. Colton, and O.L. Warren: Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).

    Article  Google Scholar 

  46. S. Huxtable, D.G. Cahill, V. Fauconnier, J.O. White, and J-C. Zhao: Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater. 3, 298 (2004).

    Article  CAS  Google Scholar 

  47. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  48. V. Ocelík, N. Janssen, S.N. Smith, and J.T.M. De Hosson: Additive manufacturing of high-entropy alloys by laser processing. JOM 68, 1810 (2016).

    Article  Google Scholar 

  49. J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, and D.M. Fabijanic: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng., A 633, 184 (2015).

    Article  CAS  Google Scholar 

  50. C. Haase, F. Tang, M.B. Wilms, A. Weisheit, and B. Hallstedt: Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys—Towards rapid alloy screening and design. Mater. Sci. Eng., A 688, 180 (2017).

    Article  CAS  Google Scholar 

  51. Y. Brif, M. Thomas, and I. Todd: The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93 (2015).

    Article  CAS  Google Scholar 

  52. D.C. Hofmann, J. Kolodziejska, S. Roberts, R. Otis, R.P. Dillon, J-O. Suh, Z-K. Liu, and J-P. Borgonia: Compositionally graded metals: A new frontier of additive manufacturing. J. Mater. Res. 29, 1899 (2014).

    Article  CAS  Google Scholar 

  53. M. Rombouts, J-P. Kruth, L. Froyen, and P. Mercelis: Fundamentals of selective laser melting of alloyed steel powders. CIRP Ann.–Manuf. Technol. 55, 187 (2006).

    Article  Google Scholar 

  54. H. Knoll, S. Ocylok, A. Weisheit, H. Springer, E. Jägle, and D. Raabe: Combinatorial alloy design by laser additive manufacturing. Steel Res. Int. 88, 1600416 (2017).

    Article  Google Scholar 

  55. B.A. Welk, M.A. Gibson, and H.L. Fraser: A combinatorial approach to the investigation of metal systems that form both bulk metallic glasses and high entropy alloys. JOM 68, 1021 (2016).

    Article  CAS  Google Scholar 

  56. J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z. Zhang, and I. Takeuchi: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, 286 (2006).

    Article  CAS  Google Scholar 

  57. H. Stein, D. Naujoks, D. Grochla, C. Khare, R. Gutkowski, S. Grützke, W. Schuhmann, and A. Ludwig: A structure zone diagram obtained by simultaneous deposition on a novel step heater: A case study for Cu2O thin films. Phys. Status Solidi A 212, 2798 (2015).

    Article  CAS  Google Scholar 

  58. X.H. Yan, J.S. Li, W.R. Zhang, and Y. Zhang: A brief review of high-entropy films. Mater. Chem. Phys. 210, 12 (2018).

    Article  CAS  Google Scholar 

  59. Y. Li, K.E. Jensen, Y. Liu, J. Liu, P. Gong, B.E. Scanley, C.C. Broadbridge, and J. Schroers: Combinatorial strategies for synthesis and characterization of alloy microstructures over large compositional ranges. ACS Comb. Sci. 18, 630 (2016).

    Article  CAS  Google Scholar 

  60. V. Chevrier and J. Dahn: Production and visualization of quaternary combinatorial thin films. Meas. Sci. Technol. 17, 1399 (2006).

    Article  CAS  Google Scholar 

  61. A. Kauffmann, M. Stüber, H. Leiste, S. Ulrich, S. Schlabach, D.V. Szabó, S. Seils, B. Gorr, H. Chen, and H-J. Seifert: Combinatorial exploration of the high entropy alloy system Co–Cr–Fe–Mn–Ni. Surf. Coat. Technol. 325, 174 (2017).

    Article  CAS  Google Scholar 

  62. C. Brundle, G. Conti, and P. Mack: XPS and angle resolved XPS, in the semiconductor industry: Characterization and metrology control of ultra-thin films. J. Electron Spectrosc. Relat. Phenom. 178, 433 (2010).

    Article  Google Scholar 

  63. H.S. Stein, R. Gutkowski, A. Siegel, W. Schuhmann, and A. Ludwig: New materials for the light-induced hydrogen evolution reaction from the Cu–Si–Ti–O system. J. Mater. Chem. A 4, 3148 (2016).

    Article  CAS  Google Scholar 

  64. O.L. Warren and T.J. Wyrobek: Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation. Meas. Sci. Technol. 16, 100 (2004).

    Article  Google Scholar 

  65. S.W. Fackler, V. Alexandrakis, D. König, A.G. Kusne, T. Gao, M.J. Kramer, D. Stasak, K. Lopez, B. Zayac, and A. Mehta: Combinatorial study of Fe–Co–V hard magnetic thin films. Sci. Technol. Adv. Mater. 18, 231 (2017).

    Article  CAS  Google Scholar 

  66. S. Thienhaus, D. Naujoks, J. Pfetzing-Micklich, D. Konig, and A. Ludwig: Rapid identification of areas of interest in thin film materials libraries by combining electrical, optical, X-ray diffraction, and mechanical high-throughput measurements: A case study for the system Ni–Al. ACS Comb. Sci. 16, 686 (2014).

    Article  CAS  Google Scholar 

  67. Y. Li, A. Savan, A. Kostka, H. Stein, and A. Ludwig: Accelerated atomic-scale exploration of phase evolution in compositionally complex materials. Mater. Horiz. 5, 86 (2018).

    Article  CAS  Google Scholar 

  68. J.E. Saal, I.S. Berglund, J.T. Sebastian, P.K. Liaw, and G.B. Olson: Equilibrium high entropy alloy phase stability from experiments and thermodynamic modeling. Scr. Mater. 146, 5 (2018).

    Article  CAS  Google Scholar 

  69. Y. Lederer, C. Toher, K.S. Vecchio, and S. Curtarolo: The search for high entropy alloys: A high-throughput ab initio approach. ar**v preprint ar**v:1711.03426 (2017).

  70. N. Gurao and K. Biswas: In the quest of single phase multi-component multiprincipal high entropy alloys. J. Alloys Compd. 697, 434 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by the European Research Council under the EU’s 7th Framework Program (FP7/2007-2013)/ERC grant agreement 290998. H. Soren-Stein and S. Thienhaus are gratefully acknowledged for development and realization, respectively, of multidimensional graphing for high-entropy alloy data visualizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiming Li or Dierk Raabe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ludwig, A., Savan, A. et al. Combinatorial metallurgical synthesis and processing of high-entropy alloys. Journal of Materials Research 33, 3156–3169 (2018). https://doi.org/10.1557/jmr.2018.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.214

Navigation