Log in

Encapsulation requirements to enable stable organic ultra-thin and stretchable devices

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, we will discuss stability and reliability requirements of organic electronic devices and evaluate different encapsulation approaches enabling stable organic ultra-thin and stretchable devices. We highlight the differences in requirements and encapsulation approaches for applications, including organic light emitting diode (OLED) displays, OLED lighting, photovoltaics, and sensors. Stability and reliability requirements addressed in this paper cover light management, mechanical characteristics, chemical compatibility, form factors, and durability. While flexible organic electronic devices have already been demonstrated and commercialized, so far only prototypes of ultra-thin and stretchable devices have been demonstrated. The technological progress is promising and by identifying the gaps between prototy** and product realization, we intend to stimulate further research and development in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. A. Tricoli, N. Nasiri, and S. De: Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 27, 1 (2017).

    Article  Google Scholar 

  2. T. Yokota, P. Zalar, M. Kaltenbrunner, H. **no, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya: Ultra-flexible organic photonic skin. Sci. Adv. 2, 1 (2016).

    Article  Google Scholar 

  3. D.J. Lipomi and Z. Bao: Stretchable and ultraflexible organic electronics. MRS Bull. 42, 93 (2017).

    Article  Google Scholar 

  4. J.A. Rogers: Wearable electronics: Nanomesh on-skin electronics. Nat. Nanotechnol. (2017).

  5. K. Thiyagarajan and U. Jeong: Strategies for stretchable polymer semiconductor layers. MRS Bull. 42, 98 (2017).

    Article  Google Scholar 

  6. S. Lee, A. Reuveny, J. Reeder, S. Lee, H. **, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, Z. Suo, and T. Someya: A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 11, 1 (2016).

    Article  Google Scholar 

  7. D. Wang, M. Wright, N.K. Elumalai, and A. Uddin: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255 (2016).

    Article  CAS  Google Scholar 

  8. T. Leijtens, K. Bush, R. Cheacharoen, R. Beal, A. Bowring, M.D. McGehee, W. Tress, K. Schenk, J. Teuscher, J-E. Moser, H. Rensmo, A. Hagfeldt, M.A. Alam, G. Gupta, J. Lou, P.M. Ajayan, M.J. Bedzyk, M.G. Kanatzidis, and A.D. Mohite: Towards enabling stable lead halide perovskite solar cells; Interplay between structural, environmental, and thermal stability. J. Mater. Chem. A 5, 11483 (2017).

    Article  CAS  Google Scholar 

  9. S.G. Hashmi, A. Tiihonen, D. Martineau, M. Ozkan, P. Vivo, K. Kaunisto, V. Ulla, S.M. Zakeeruddin, and M. Grätzel: Long term stability of air processed inkjet infiltrated carbon-based printed perovskite solar cells under intense ultra-violet light soaking. J. Mater. Chem. A 5, 4797 (2017).

    Article  CAS  Google Scholar 

  10. L. Feng, W. Tang, J. Zhao, R. Yang, W. Hu, Q. Li, R. Wang, and X. Guo: Unencapsulated air-stable organic field effect transistor by all solution processes for low power vapor sensing. Sci. Rep. 6, 20671 (2016).

    Article  CAS  Google Scholar 

  11. Y. Zhao, L. Yan, I. Murtaza, X. Liang, H. Meng, and W. Huang: A thermally stable anthracene derivative for application in organic thin film transistors. Org. Electron. 43, 105 (2017).

    Article  CAS  Google Scholar 

  12. S.A. Gevorgyan, M.V. Madsen, B. Roth, M. Corazza, M. Hösel, R.R. Søndergaard, M. Jørgensen, and F.C. Krebs: Lifetime of organic photovoltaics: Status and predictions. Adv. Energy Mater. 6, 1 (2016).

    Article  Google Scholar 

  13. D. Yu, Y.Q. Yang, Z. Chen, Y. Tao, and Y.F. Liu: Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43 (2016).

    Article  CAS  Google Scholar 

  14. Samsung: www.samsung.com (viewed on 03/09/2018).

  15. J. Lee: Samsung may release phones with bendable screens in 2017. Available at: https://www.bloomberg.com/news/articles/2016-06-07/samsung-said-to-consider-phones-with-bendable-screens-for-2017-ip4tgwz9 (published on 06/06/2016, accessed on 03/19/2018).

  16. L. Moro and R.J. Visser: Barrier films for photovoltaics applications. In Organic Photovoltaics, C. Brabec, V. Dyakonov, and U. Scherf, eds. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2008); pp. 491–510.

    Chapter  Google Scholar 

  17. C. Adachi, R. Hattori, H. Kaji, and T. Tsujimura, eds.: Handbook Light-Emitting Diodes (Springer, Berlin, Heidelbergn, forthcoming), https://doi.org/10.1007/978-4-431-55761-6.

  18. Apple: www.apple.com (viewed on 03/09/2018).

  19. D.Y. Kondakov: In OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes, D.J. Gaspar and E. Polikarpov, eds. (CRC Press, Boca Raton, Florida, 2015); pp. 339–364.

  20. L.L. Moro, T.A. Krajewski, N.M. Rutherford, O. Philips, R.J. Visser, M.E. Gross, W.D. Bennett, and G.L. Graff: Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. In Proceedings of SPIE—The International Society for Optical Engineering 5214 (Organic Light-Emitting Materials and Devices VII), In Z.H. Kafafi and P.A. Lane, eds. (SPIE, San Diego, California, 2004); p. 83.

    Google Scholar 

  21. P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M. Hall, E. Mast, C.C. Bonham, W.D. Bennett, L.A. Michalski, M.S. Weaver, J.J. Brown, D. Fogarty, and L.S. Sapochak: In Z.H. Kafafi, ed. (2001); p. 75.

  22. C. Madigan, S. Van Slyke, and E. Vronsky: Inkjet printing equipment for organic LED mass production. SPIE Newsroom, 1 (2015).

  23. G.L. Graff, R.E. Williford, and P.E. Burrows: Mechanisms of vapor permeation through multilayer barrier films: Lag time versus equilibrium permeation. J. Appl. Phys. 96, 1840 (2004).

    Article  CAS  Google Scholar 

  24. B.D. Vogt, H-J. Lee, V.M. Prabhu, D.M. DeLongchamp, E.K. Lin, W. Wu, and S.K. Satija: X-ray and neutron reflectivity measurements of moisture transport through model multilayered barrier films for flexible displays. J. Appl. Phys. 97, 114509 (2005).

    Article  Google Scholar 

  25. X. Chu, L. Moro, and R.J. Visser: Anal fail modes multilayer thin film encapsulation OLED devices Ca film. Presented at the IDW’ 04, The 11th International Display Workshop Nilgata, Japan, 2004.

  26. L. Moro, X. Chu, and H. Hirayama: A mass manufacturing process for Barix encapsulation of OLED displays: A reduced number of dyads, higher throughput and 1.5 mm edge seal. In IMID/IDMC’ 06 Digest (Daegu, South Korea, 2006); pp. 754–758.

  27. S. Lin, X. Chu, and P.M. Rosenblum: Ultra-barrier coatings enabled by inkjet print. In Spring 2010 Meeting of the American Chemical Society—Division of Polymeric Materials: Science and Engineering (San Francisco, California, 2010).

  28. D-U. **, J-S. Lee, T-W. Kim, S-G. An, D. Straykhilev, Y-S. Pyo, H-S. Kim, D-B. Lee, Y-G. Mo, H-D. Kim, and H-K. Chung: 65.2: Distinguished paper: World-largest (6.5″) flexible full color top emission AMOLED display on plastic film and its bending properties. SID Int. Symp. Dig. Tech. Pap. 40, 983 (2009).

    Article  CAS  Google Scholar 

  29. J. Hebb: Printed Electronics USA (Santa Clara, California, 2017).

    Google Scholar 

  30. C.F. Madigan, C.R. Hauf, L.D. Barkley, N. Harjee, E. Vronsky, and S.A. Van Slyke: 30.2: Invited paper: Advancements in inkjet printing for OLED mass production. SID Int. Symp. Dig. Tech. Pap. 45, 399 (2014).

    Article  Google Scholar 

  31. T. Tsujimura: OLED Displays (John Wiley & Sons, Inc., Hoboken, New Jersey, 2012); pp. 205–223.

    Google Scholar 

  32. A. Ghosh, E.P. Donoghue, I. Khayrullin, T. Ali, I. Wacyk, K. Tice, F. Vazan, L. Sziklas, D. Fellowes, and R. Draper: 62-1: Invited paper: Directly patterened 2645 PPI full color OLED microdisplay for head mounted wearables. SID Int. Symp. Dig. Tech. Pap. 47, 837 (2016).

    Article  Google Scholar 

  33. S. Levy: Google glass 2.0 is a startling second act. Available at: https://www.wired.com/story/google-glass-2-is-here (published on 07/18/2017, accessed on 03/19/2018).

  34. Mobile World Congress, 2017.

  35. S. Wittmann: Printed Electronics USA (Santa Clara, California, 2017).

    Google Scholar 

  36. J-H. Hong, J.M. Shin, G.M. Kim, H. Joo, G.S. Park, I.B. Hwang, M.W. Kim, W-S. Park, H.Y. Chu, and S. Kim: 9.1-inch stretchable AMOLED display based on LTPS technology. J. Soc. Inf. Disp. 25, 194 (2017).

    Article  CAS  Google Scholar 

  37. C. Mathas: Will the auto industry adopt OLED lighting? Available at: https://www.edn.com/electronics-blogs/led-zone/4458025/Will-the-auto-industry-adopt-OLED-lighting (published on 02/24/2017, accessed on 03/19/2018).

  38. T.C. Nguyen: What you need to know about OLED lighting. Available at: https://www.washingtonpost.com/news/innovations/wp/2015/01/05/what-you-need-to-know-about-oled-lighting/?utm_term=.b64364d7c26a (published on 01/05/2015, accessed on 03/19/2018).

  39. Osram: www.osram.com (viewed on 03/09/2018).

  40. National renewable energy laboratory, 2017.

  41. M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress, and A. Hagfeldt: Promises and challenges of perovskite solar cells. Science 744, 739 (2017).

    Google Scholar 

  42. R. Roesch, T. Faber, E. Von Hauff, T.M. Brown, M. Lira-Cantu, and H. Hoppe: Procedures and practices for evaluating thin-film solar cell stability. Adv. Energy Mater. 5, 1 (2015).

    Article  Google Scholar 

  43. V. Steinmann, R.E. Brandt, and T. Buonassisi: Photovoltaics: Non-cubic solar cell materials. Nat. Photonics 9, 355 (2015).

    Article  CAS  Google Scholar 

  44. R.E. Brandt, V. Stevanović, D.S. Ginley, and T. Buonassisi: Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 5, 265 (2015).

    Article  CAS  Google Scholar 

  45. D. Koushik, W.J.H. Verhees, Y. Kuang, S. Veenstra, D. Zhang, M.A. Verheijen, M. Creatore, and R.E.I. Schropp: High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy Environ. Sci. 10, 91 (2017).

    Article  CAS  Google Scholar 

  46. P. Cheng and X. Zhan: Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 45, 2544 (2016).

    Article  CAS  Google Scholar 

  47. N. Grossiord, J.M. Kroon, R. Andriessen, and P.W.M. Blom: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432 (2016).

    Article  Google Scholar 

  48. F.C. Krebs, J.E. Carlé, N. Cruys-Bagger, M. Andersen, M.R. Lilliedal, M.A. Hammond, and S. Hvidt: Lifetimes of organic photovoltaics: Photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminum devices. Sol. Energy Mater. Sol. Cells 86, 499 (2005).

    Article  CAS  Google Scholar 

  49. K. Norrman, N.B. Larsen, and F.C. Krebs: Lifetimes of organic photovoltaics: Combining chemical and physical characterisation techniques to study degradation mechanisms. Sol. Energy Mater. Sol. Cells 90, 2793 (2006).

    Article  CAS  Google Scholar 

  50. H. Neugebauer, C. Brabec, J.C. Hummelen, and N.S. Sariciftci: Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells. Sol. Energy Mater. Sol. Cells 61, 35 (2000).

    Article  CAS  Google Scholar 

  51. J.A. Hauch, P. Schilinsky, S.A. Choulis, S. Rajoelson, and C.J. Brabec: The impact of water vapor transmission rate on the lifetime of flexible polymer solar cells. Appl. Phys. Lett. 93, 103306 (2008).

    Article  Google Scholar 

  52. D.C. Jordan and S.R. Kurtz: Photovoltaic degradation rates-an analytical review. Prog. Photovoltaics Res. Appl. 21, 12 (2013).

    Article  Google Scholar 

  53. D.M. Powell, R. Fu, K. Horowitz, P.A. Basore, M. Woodhouse, and T. Buonassisi: The capital intensity of photovoltaics manufacturing: Barrier to scale and opportunity for innovation. Energy Environ. Sci. 8, 3395 (2015).

    Article  Google Scholar 

  54. D.M. Powell, M.T. Winkler, H.J. Choi, C.B. Simmons, D.B. Needleman, and T. Buonassisi: Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy Environ. Sci. 5, 5874 (2012).

    Article  Google Scholar 

  55. D.M. Powell, M.T. Winkler, A. Goodrich, and T. Buonassisi: Modeling the cost and minimum sustainable price of crystalline silicon photovoltaic manufacturing in the United States. IEEE J. Photovolt. 3, 662 (2013).

    Article  Google Scholar 

  56. C.J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W.J. Belcher, and P.C. Dastoor: A projection of commercial-scale organic photovoltaic module costs. Sol. Energy Mater. Sol. Cells 120, 9 (2014).

    Article  CAS  Google Scholar 

  57. C. Deibel and V. Dyakonov: Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 73, 96401 (2010).

    Article  Google Scholar 

  58. B.L. Beckman: All-girl engineer team invents solar-powered tent for the homeless. Available at: https://mashable.com/2017/06/15/diy-girls-solar-powered-tent-homeless/#h0IA4T9PSSql (published on 06/15/2017).

  59. P. Belluck: First digital pill approved to worries about biomedical ‘big brother’. Available at: https://www.nytimes.com/2017/11/13/health/digital-pill-fda.html, New York Times (published on 11/13/2017, accessed on 03/19/2018).

  60. T. Someya, Z. Bao, and G.G. Malliaras: The rise of plastic bioelectronics. Nature 540, 379 (2016).

    Article  CAS  Google Scholar 

  61. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458 (2013).

    Article  CAS  Google Scholar 

  62. F. Karim and S. Zeadally: Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sust. Energ. Rev. 55, 1041 (2016).

    Article  Google Scholar 

  63. J. Xu, J. Zhang, X. Zheng, X. Wei, and J. Han: Wireless sensors in farmland environmental monitoring. In 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (IEEE, **’an, China, 2015); pp. 372–379.

    Chapter  Google Scholar 

  64. M. Srbinovska, C. Gavrovski, V. Dimcev, and A. Krkoleva: Environmental parameters monitoring in precision agriculture using wireless sensor networks. J. Clean. Prod. 88, 297 (2015).

    Article  Google Scholar 

  65. L. Ruiz-garcia, L. Lunadei, P. Barreiro, and J.I. Robla: A review of wireless sensor technologies and applications in agriculture and food industry: State of the art and current trends. Sensors 9, 4728 (2009).

    Article  Google Scholar 

  66. S. Khanal, J. Fulton, and S. Shearer: An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 139, 22 (2017).

    Article  Google Scholar 

  67. Y. Zang, D. Huang, C. Di, and D. Zhu: Device engineered organic transistors for flexible sensing applications. Adv. Mater. 28, 4549 (2016).

    Article  CAS  Google Scholar 

  68. R.D.J. Vuuren, A. Armin, A.K. Pandey, P.L. Burn, and P. Meredith: Organic photodiodes: The future of full color detection and image sensing. Adv. Mater. 28, 4766 (2016).

    Article  Google Scholar 

  69. J. de Goede, P. Bouten, L. Médico, Y. Leterrier, J-A. Månson, and G. Nisato: Failure of brittle functional layers in flexible electronic devices. MRS Online Proc. Libr. 854, U9.2 (2004).

    Article  Google Scholar 

  70. G. Nisato, M. Kuilder, P. Bouten, L. Moro, O. Philips, and N. Rutherford: P-88: Thin film encapsulation for OLEDs: Evaluation of multi-layer barriers using the Ca test. SID Int. Symp. Dig. Tech. Pap. 34, 550 (2003).

    Article  CAS  Google Scholar 

  71. H. Kim, A.K. Singh, C-Y. Wang, C. Fuentes-Hernandez, B. Kippelen, and S. Graham: Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films. Rev. Sci. Instrum. 87, 33902 (2016).

    Article  Google Scholar 

  72. A. Bulusu, S. Graham, H. Bahre, H. Behm, M. Böke, R. Dahlmann, C. Hopmann, and J. Winter: The mechanical behavior of ALD-polymer hybrid films under tensile strain. Adv. Eng. Mater. 17, 1057 (2015).

    Article  CAS  Google Scholar 

  73. G.B. McKenna, Y. Leterrier, and C.R. Schultheisz: The evolution of material properties during physical aging. Polym. Eng. Sci. 35, 403 (1995).

    Article  CAS  Google Scholar 

  74. F.D. Novoa, D.C. Miller, and R.H. Dauskardt: Adhesion and debonding kinetics of photovoltaic encapsulation in moist environments. Prog. Photovoltaics Res. Appl. 24, 183 (2016).

    Article  CAS  Google Scholar 

  75. R. Shivakumar, S.K. Tippabhotla, V.A. Handara, G. Illya, A.A.O. Tay, F. Novoa, R.H. Dauskardt, and A.S. Budiman: Fracture mechanics and testing of interface adhesion strength in multilayered structures—Application in advanced solar PV materials and technology. Procedia Eng. 139, 47 (2016).

    Article  Google Scholar 

  76. C. Cai, D.C. Miller, I.A. Tappan, and R.H. Dauskardt: Degradation of thermally-cured silicone encapsulant under terrestrial UV. Sol. Energy Mater. Sol. Cells 157, 346 (2016).

    Article  CAS  Google Scholar 

  77. Yuasa System Co. Ltd: www.yuasa-system.jp (viewed on 03/09/2018).

Download references

ACKNOWLEDGMENT

The authors acknowledge their colleagues at Kateeva Inc. with special thanks to Brian E. Lassiter, Teresa Ramos, June Zhang, Chris Hauf, and Conor Madigan for their support and fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza Moro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinmann, V., Moro, L. Encapsulation requirements to enable stable organic ultra-thin and stretchable devices. Journal of Materials Research 33, 1925–1936 (2018). https://doi.org/10.1557/jmr.2018.194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.194

Navigation