Log in

Experimental investigation of phase equilibria in the Ni–Fe–Zr ternary system

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three isothermal sections of the Ni–Fe–Zr ternary system at 1000, 1100, and 1200 °C were experimentally determined using equilibrated ternary alloys. No ternary compound is found in this system. The obtained experimental results show that among three isothermal sections, the (γFe, Ni) phase region extends from the Ni-rich corner to the Fe-rich corner, and the solubility of Zr in the (γFe, Ni) phase is small. The phase equilibrium at 1100 °C is similar to that at 1000 °C. The Ni5Zr, Ni10Zr7, and Fe2Zr phases have solid solution composition ranges, but the Ni7Zr2, Ni21Zr8, NiZr, NiZr2, and Fe23Zr6 phases almost exhibit nearly linear compounds both at 1000 and 1100 °C. The solubilities of Fe in Ni7Zr2 phase and Ni in Fe2Zr phase are extremely large. At 1200 °C, the liquid phase of Zr-rich corner forms the continuous region from the Ni–Zr side to the Fe–Zr side. Additionally, the solubilities of Fe in Ni5Zr, NiZr phases and Ni in Fe23Zr6 phase clearly increase with increasing temperature to 1200 °C. The obtained results may provide a better understanding of microstructures and further development of the Ni–Fe–Zr alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. A. Inoue, T. Zhang, T. Itoi, and A. Takeuchi: New Fe–Co–Ni–Zr–B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties. Mater. Trans., JIM 38, 359–362 (1997).

    Article  CAS  Google Scholar 

  2. A. Inoue, T. Zhang, and H. Koshiba: New bulk amorphous Fe–(Co, Ni)–M–B (M = Zr, Hf, Nb, Ta, Mo, W) alloys with good soft magnetic properties. J. Appl. Phys. 83, 6326–6328 (1998).

    Article  CAS  Google Scholar 

  3. Y.J. Liu and I.T.H. Chang: The correlation of microstructural development and thermal stability of mechanically alloyed multicomponent Fe–Co–Ni–Zr–B alloys. Acta Mater. 50, 2747–2760 (2002).

    Article  CAS  Google Scholar 

  4. K. Shirakawa, K. Fukamichi, T. Kaneko, and T. Masumoto: Electrical-resistivity minima of Fe–(Ni, Co)–Zr amorphous alloys. J. Phys. F: Met. Phys. 14, 1491–1499 (1984).

    Article  CAS  Google Scholar 

  5. K. Shirakawa, S. Ohnuma, M. Nose, and T. Masumoto: Invar characteristics of amorphous (Fe, Co, and Ni)–Zr alloys. IEEE Trans. Magn. 16, 1129–1131 (1980).

    Article  Google Scholar 

  6. C.E. Violet, R.J. Borg, L. May, K.V. Rao, J. Nogues, R.D. Taylor, and A.P. Batra: Magnetic behavior of amorphous Fe–Ni–Zr alloys and their response to radiation damage. Hyperfine Interact. 42, 963–966 (1988).

    Article  CAS  Google Scholar 

  7. A. Inoue, H. Tomioka, and T. Masumoto: Mechanical properties of ductile Fe–Ni–Zr and Fe–Ni–Zr (Nb or Ta) amorphous alloys containing fine crystalline particles. J. Mater. Sci. 18, 153–160 (1983).

    Article  CAS  Google Scholar 

  8. J.J. Saida, C.F. Li, M. Matsushita, and A. Inoue: Nano-icosahedral quasicrystalline phase formation from a supercooled liquid state in Zr–Fe–Ni ternary metallic glass. Appl. Phys. Lett. 76, 3037–3039 (2000).

    Article  CAS  Google Scholar 

  9. F. Hamed: Nonlinear IV characteristics observed in annealed Ni–Fe–Zr metallic glass. Phys. B 364, 213–217 (2005).

    Article  CAS  Google Scholar 

  10. D.Y. Liu, W.S. Sun, H.F. Zhang, and Z.Q. Hu: Preparation, thermal stability and magnetic properties of Fe–Co–Ni–Zr–Mo–B bulk metallic glass. Intermetallics 12, 1149–1152 (2004).

    Article  CAS  Google Scholar 

  11. A. Kojima, A. Makina, Y. Kawamura, A. Inoue, and T. Masumoto: Soft-magnetic properties of nanocrystalline Fe–Zr–B–Ni bulk alloy produced by warm extrusion. Jpn. J. Appl. Phys. 35, 19–22 (1996).

    Article  Google Scholar 

  12. L. Heikinheimo and W. Miglietti: Proc. IBSC, Albuquerque, New Mexico (AWS: Miami, (2000); pp. 468–475.

    Google Scholar 

  13. L. Heikinheimo, W. Miglietti, J. Kipnis, E. Leone, and A. Rabinkin: LOT 01, DVS, Aahen, 468–475.

  14. G.J. Zhou, S. **, L.B. Liu, H.S. Liu, and Z.P. **: Determination of isothermal section of Fe–Ni–Zr ternary system at 1198 K. Acta Metall. Sin. 20, 398–402 (2007).

    Article  CAS  Google Scholar 

  15. I.V. Vjunitsky, N.L. Abramycheva, K.B. Kalmykov, and S.F. Dunayev, II: Solid phase interaction of elements in the Fe–Ni–Zr and Fe–Ni–Nb systems at 1273 K. Vestn. Mosk. Univ., Ser. 2: Khim. 40, 179–182 (1999).

    Google Scholar 

  16. L.J. Swartzendruber, V.P. Itkin, and C.B. Alcock: The Fe–Ni (iron–nickel) system. J. Phase Equilib. 12, 288–312 (1991).

    Article  CAS  Google Scholar 

  17. H. Okamoto: Fe–Zr (iron–zirconium). J. Phase Equilib. 14, 652–653 (1993).

    Article  CAS  Google Scholar 

  18. P. Nash and C.S. Jayanth: Phase Diagrams of Binary Nickel Alloys (ASM International, Materials Park, OH, 1991); pp. 390–394.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51571168 and 51471138), the Ministry of Science and Technology of China (Grant No. 2014DFA53040), and the Ministry of Education of China, grant number 2012012113004. The support from the Aviation Industry Corporation of China is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S.Y., Zhang, J.B., Wang, C.P. et al. Experimental investigation of phase equilibria in the Ni–Fe–Zr ternary system. Journal of Materials Research 31, 2407–2414 (2016). https://doi.org/10.1557/jmr.2016.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.125

Navigation