Log in

Palladium seeded GaAs nanowires

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we present a detailed investigation of the growth of palladium-seeded GaAs nanowires. Nanowires grown on GaAs (111)B substrates consist of three different morphologies, denoted as curly (containing multiple kinks), inclined (relative to the substrate, such as 〈001〉), and vertical. We show that the relative yield of the different types is controllable by a combination of V/III ratio and temperature, where vertical and inclined nanowires are promoted by a high temperature and low V/III ratio. These growth conditions are expected to promote a higher Ga incorporation into the Pd particle, which is confirmed by energy dispersive x-ray analysis. We propose that the observed relationship between particle composition and nanowire morphology may be related to the particle phase, with liquid particles promoting straight nanowire growth. In addition, particles at the tips of nanowires are sometimes observed to be smaller than the initial particle size, suggesting that Pd has been lost during the growth process. Finally, we demonstrate the importance of initial particle size-control to interpret diameter changes after growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. K.A. Dick: A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III–V nanowires. Prog. Cryst. Growth Charact. Mater. 54(3–4), 138–173 (2008).

    Article  CAS  Google Scholar 

  2. A.J. Tavendale and S.J. Pearton: Deep level, quenched-in defects in silicon doped with gold, silver, iron, copper or nickel. J. Phys. C: Solid State Phys. 16(9), 1665–1673 (1983).

    Article  CAS  Google Scholar 

  3. J. Hornstra: Dislocations in the diamond lattice. J. Phys. Chem. Solids 5(1–2), 129–141 (1958).

    Article  CAS  Google Scholar 

  4. M.D. Schroer and J.R. Petta: Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett. 10(5), 1618–1622 (2010).

    Article  CAS  Google Scholar 

  5. C. Thelander, P. Caroff, S. Plissard, A.W. Dey, and K.A. Dick: Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 11(6), 2424–2429 (2011).

    Article  CAS  Google Scholar 

  6. H. Xu, Y. Wang, Y. Guo, Z. Liao, and Q. Gao: Defect-free <110> zinc-blende structured InAs nanowires catalyzed by palladium. Nano Lett. 12, 5744–5749 (2012).

    Article  CAS  Google Scholar 

  7. I. Regolin, V. Khorenko, W. Prost, F.J. Tegude, D. Sudfeld, J. Kästner, G. Dumpich, K. Hitzbleck, and H. Wiggers: GaAs whiskers grown by metal-organic vapor-phase epitaxy using Fe nanoparticles. J. Appl. Phys. 101(5), 1–5 (2007).

    Article  Google Scholar 

  8. S. Heun, B. Radha, D. Ercolani, G.U. Kulkarni, F. Rossi, V. Grillo, G. Salviati, F. Beltram, and L. Sorba: Coexistence of vapor-liquid-solid and vapor-solid-solid growth modes in Pd-assisted InAs nanowires. Small 6(17), 1935–1941 (2010).

    Article  CAS  Google Scholar 

  9. S. Heun, B. Radha, D. Ercolani, G.U. Kulkarni, F. Rossi, V. Grillo, G. Salviati, F. Beltram, and L. Sorba: Pd-assisted growth of InAs nanowires. Cryst. Growth Des. 10(9), 4197–4202 (2010).

    Article  CAS  Google Scholar 

  10. K. Hillerich, D.S. Ghidini, K.A. Dick, K. Deppert, and J. Johansson: Cu particle seeded InP–InAs axial nanowire heterostructures. Phys. Status Solidi RRL 7(10), 850–854 (2013).

    Article  CAS  Google Scholar 

  11. R. Sun, D. Jacobsson, I-J. Chen, M. Nilsson, C. Thelander, S. Lehmann, and K.A. Dick: Sn-seeded GaAs nanowires as self-assembled radial p-n junctions. Nano Lett. 15(6), 3757–3762 (2015).

    Article  CAS  Google Scholar 

  12. F. Martelli, S. Rubini, M. Piccin, G. Bais, F. Jabeen, S. De Franceschi, V. Grillo, E. Carlino, F. D’Acapito, F. Boscherini, S. Cabrini, M. Lazzarino, L. Businaro, F. Romanato, and A. Franciosi: Manganese-induced growth of GaAs nanowires. Nano Lett. 6(9), 2130–2134 (2006).

    Article  CAS  Google Scholar 

  13. F. Jabeen, M. Piccin, L. Felisari, V. Grillo, G. Bais, S. Rubini, F. Martelli, F. D’Acapito, M. Rovezzi, and F. Boscherini: Mn-induced growth of InAs nanowires. J. Vac. Sci. Technol., B 28(3), 478 (2010).

    Article  CAS  Google Scholar 

  14. A.T. Vogel, J. de Boor, M. Becker, J.V. Wittemann, S.L. Mensah, P. Werner, and V. Schmidt: Ag-assisted CBE growth of ordered InSb nanowire arrays. Nanotechnology 22(1), 015605 (2011).

    Article  Google Scholar 

  15. D.D. Fanfair and B.A. Korgel: Bismuth nanocrystal-seeded III-V semiconductor nanowire synthesis. Cryst. Growth Des. 5(5), 1971–1976 (2005).

    Article  CAS  Google Scholar 

  16. H-Z. Zhuang, B.L. Li, C.S. Xue, X. Zhang, S.Y. Zhang, D-X. Wang, and J.B. Shen: Growth of Nb-catalysed GaN nanowires. Microelectron. J. 39(12), 1629–1633 (2008).

    Article  CAS  Google Scholar 

  17. X. Weng, R. Burke, and J. Redwing: The nature of catalyst particles and growth mechanisms of GaN nanowires grown by Ni-assisted metal–organic chemical vapor deposition. Nanotechnology 20, 1–5 (2009).

    Article  Google Scholar 

  18. H. Li, C. Xue, H. Zhuyang, J. Chen, Z. Yang, L. Qin, Y. Huang, and D. Zhang: Synthesis and characterization of GaN nanowires with Tantalum catalyst. Mater. Chem. Phys. 109(2–3), 249–252 (2008).

    Article  CAS  Google Scholar 

  19. J. Chen, C. Xue, H. Zhuang, L. Qin, H. Li, and Z. Yang: Synthesis of GaN nanowires by Tb catalysis. Appl. Surf. Sci. 254(15), 4716–4719 (2008).

    Article  CAS  Google Scholar 

  20. R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964).

    CAS  Google Scholar 

  21. A.I. Persson, M.W. Larsson, S. Stenström, B.J. Ohlsson, L. Samuelson, and L.R. Wallenberg: Solid-phase diffusion mechanism for GaAs nanowire growth. Nat. Mater. 3(10), 677–681 (2004).

    Article  CAS  Google Scholar 

  22. Y.C. Chou, C.Y. Wen, M.C. Reuter, D. Su, E.A. Stach, and F.M. Ross: Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts. ACS Nano 6(7), 6407–6415 (2012).

    Article  CAS  Google Scholar 

  23. F.M. Ross, C-Y. Wen, S. Kodambaka, B.A. Wacaser, M.C. Reuter, and E.A. Stach: The growth and characterization of Si and Ge nanowires grown from reactive metal catalysts. Philos. Mag. 90(20), 2807–2816 (2010).

    Article  CAS  Google Scholar 

  24. S. Kodambaka, J. Tersoff, M.C. Reuter, and F.M. Ross: Germanium nanowire growth below the eutectic temperature. Science 316(5825), 729–732 (2007).

    Article  CAS  Google Scholar 

  25. S. Hofmann, R. Sharma, C.T. Wirth, F. Cervantes-Sodi, C. Ducati, T. Kasama, R.E. Dunin-Borkowski, J. Drucker, P. Bennett, and J. Robertson: Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nat. Mater. 7(5), 372–375 (2008).

    Article  CAS  Google Scholar 

  26. K. Hillerich, K.A. Dick, M.E. Messing, K. Deppert, and J. Johansson: Simultaneous growth mechanisms for Cu-seeded InP nanowires. Nano Res. 5(5), 297–306 (2012).

    Article  CAS  Google Scholar 

  27. B.O. Meuller, M.E. Messing, D.L.J. Engberg, A.M. Jansson, L.I.M. Johansson, S.M. Norlén, N. Tureson, and K. Deppert: Review of spark discharge generators for production of nanoparticle aerosols. Aerosol Sci. Technol. 46(11), 1256–1270 (2012).

    Article  CAS  Google Scholar 

  28. J. Johansson, K.A. Dick, P. Caroff, M.E. Messing, J. Bolinsson, K. Deppert, and L. Samuelson: Diameter dependence of the wurtzite-zinc blende transition in InAs nanowires. J. Phys. Chem. C 114(9), 3837–3842 (2010).

    Article  CAS  Google Scholar 

  29. B.M. Borg, J. Johansson, K. Storm, and K. Deppert: Geometric model for metalorganic vapour phase epitaxy of dense nanowire arrays. J. Cryst. Growth 366, 15–19 (2013).

    Article  Google Scholar 

  30. K. Storm: NanoDim Software. http://nanodim.kristian.storm.com (accessed December 03 2015).

  31. B. Predel: Ga-Pd (Gallium-Palladium). In Landolt-Börnstein — Group IV Physical Chemistry, Ga-Gd — Hf-Zr, O. Madelung, ed. (Springer-Verlag: Berlin, 1996); pp. 57–59.

    Google Scholar 

  32. S.V. Thombare, A.F. Marshall, and P.C. McIntyre: Size effects in vapor-solid-solid Ge nanowire growth with a Ni-based catalyst. J. Appl. Phys. 112(054325), 0–6 (2012).

    CAS  Google Scholar 

  33. C-Y. Wen, J. Tersoff, M.C. Reuter, E.A. Stach, and F.M. Ross: Step-flow kinetics in nanowire growth. Phys. Rev. Lett. 105(19), 1–4 (2010).

    Article  Google Scholar 

  34. H. Xu, Y. Guo, Z. Liao, and W. Sun: Catalyst size dependent growth of Pd-catalyzed one-dimensional InAs nanostructures. Appl. Phys. Lett. 102, 203108 (2013).

    Article  Google Scholar 

  35. V. Schmidt: Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 5(5), 931–935 (2005).

    Article  CAS  Google Scholar 

  36. R.G. Cai, Y. Gong, and B. Wang: The size-dependent growth direction of ZnSe nanowires. Adv. Mater. 18, 109–114 (2006).

    Article  CAS  Google Scholar 

  37. Z. Zhang, K. Zheng, Z-Y. Lu, P-P. Chen, W. Lu, and J. Zou: Catalyst orientation-induced growth of defect-free zinc-blende structured \(\left\langle {00\bar 1} \right\rangle \) InAs nanowires. Nano Lett. 15, 876–882 (2015).

    Article  CAS  Google Scholar 

  38. H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, X. Zhang, Y. Guo, and J. Zou: Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 7(4), 921–926 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge financial support from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement No. 336126, and from the Swedish Research Council (VR), the Knut and Alice Wallenberg Foundation (KAW) and the Nanometer Structure Consortium at Lund University (nmC@LU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Hallberg.

Additional information

This paper has been selected as an Invited Feature Paper.

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2015.400.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallberg, R.T., Lehmann, S., Messing, M.E. et al. Palladium seeded GaAs nanowires. Journal of Materials Research 31, 175–185 (2016). https://doi.org/10.1557/jmr.2015.400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.400

Navigation