Log in

Optimization of Degreasing-Sintering Process for Mg2Si/PLA Mixture and Influences of Additive Amount of Al on Sintered Density and Thermoelectric Performance of Mg2Si Fabricated by the Optimized Process

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Fused deposition modelling (FDM) type of 3D printing is widely used for manufacturing complex shaped polymer products. Recently, the metal/polymer composite products can be made by 3D printer using metal/polymer composite filament. Now, we are planning to develop a new manufacturing process of the thermoelectric (TE) elements or modules by combining the FDM-type 3D printing and the degreasing-sintering process. In this work, we focused on the degreasing-sintering process of the mixture of Mg2Si and polylactic acid (PLA) powders. Mg2Si compound powder was synthesized by a liquid-solid phase reaction (LSPR) method. The powder mixtures of Mg2Si, Al and PLA were pressed and heated in a pulse discharge sintering (PDS) chamber under a vacuum in various degreasing conditions. Following the degreasing, the sintering of Mg2Si was carried out in the same PDS chamber at various starting sintering temperatures. Sintered density, Seebeck coefficient and electrical resistivity of the consolidated Mg2Si were measured and the power factor as a TE performance was estimated from the TE properties. The optimum conditions of degreasing-sintering process maximizing the sintered density and the TE performance of Al-doped Mg2Si were investigated. Furthermore, the influences of the additive amount of Al on the sintered density and the TE performance of Mg2Si fabricated via the optimized degreasing-sintering process were investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Jordan, 3D Printing, MIT Press, Cambridge, MA, U.S.A., (2019), pp. 1–24.

    Book  Google Scholar 

  2. Y. Tao, H. Wang, Z. Li, P. Li, S. Q. Shi, Materials 10, 399, doi:10.3390/ma10040339 (2017).

    Article  Google Scholar 

  3. F. Ning, W. Cong, J. Qiu, J. Wei, S. Wang, Composites Part B 80, 369–378 (2015).

    Article  CAS  Google Scholar 

  4. R. Guo, Z. Ren, H. Bi, M. Xu, L. Cai, Polymers 11, 549, doi:10.3390/polym11030549 (2019).

    Article  Google Scholar 

  5. C. B. Sweeney, B. A. Lackey, M. J. Pospisil, T. C. Achee, V. K. Hicks, A. G. Moran, B. R. Teipel, M. A. Saed, M. J. Green, Science Advances 3, e1700262, doi: 10.1126/sciadv.1700262 (2017).

    Article  Google Scholar 

  6. H. Guo, R. Lv, S. Bai, Nano Materials Science 1, 101–115 (2019).

    Article  Google Scholar 

  7. A. L. M. Borja, J. J. P. Bueno, M. L. M. Lopez, MRS Advances 3(64), 3891–3898 (2018).

    Article  Google Scholar 

  8. R. M. German, A. Bose, Injection Molding of Metals and Ceramics, Metal Powder Industries Federation, Princeton, NJ, U.S.A., (1997), pp. 11–24.

    Google Scholar 

  9. C. Oztana, S. Ballikayab, U. Ozgunb, R. Karkkainena, E. Celik, Applied Materials Today 15, 77–82 (2019).

    Article  Google Scholar 

  10. T. Itoh, A. Tominaga, T. **ushi, Z. Ishijima, J. Jpn Soc. Powder Powder Metallurgy 61, 324–328 (2014).

    Article  CAS  Google Scholar 

  11. T. Itoh, J. Jpn Soc. Powder Powder Metallurgy 65, 154–157 (2018).

    Article  CAS  Google Scholar 

  12. T. Itoh, J. Jpn Soc. Powder Powder Metallurgy 65, 713–718 (2018).

    Article  CAS  Google Scholar 

  13. T. Itoh, J. Jpn Soc. Powder Powder Metallurgy 66, 80–88 (2019).

    Article  CAS  Google Scholar 

  14. A. A. Snarskii, L. P. Bulat, Thermoelectric Handbook: Macro to Nano, edited by D. M. Rowe, CRC Press, Boca Raton, FL, U.S.A., (2005) Chapter 45, pp. 1–11.

  15. J. Tani, H. Kido, Intermetallics 15, 1202–1207 (2007).

    Article  CAS  Google Scholar 

  16. M. Fukano, T. Iida, K. Makino, M. Akasaka, Y. Oguni, Y. Takanashi, Mater. Res. Soc. Symp. Proc. Vol. 1044 (2008), 1044-U06-13, doi:10.1557/PROC-1044-U06-13.

    Google Scholar 

  17. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  18. S. Choi, K. Kim, I. Kim, S. Kim, W. Seo, Current Applied Physics 11, S388–S391 (2011).

    Article  Google Scholar 

  19. T. Itoh, K. Hagio, AIP Conf. Proc. 1449, 207–210 (2012).

    Article  CAS  Google Scholar 

  20. S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M.S. Toprak, M. Fabrizio, S. Barison, J. Electronic Materials 42, 1956–1959 (2013).

    Article  CAS  Google Scholar 

  21. X. Hu, D. Mayson, M. R. Barnett, J. Alloys and Compounds 589, 485–490 (2014).

    Article  CAS  Google Scholar 

  22. N. Farahi, M. Van Zant, J. Zhao, J. S. Tse, S. Prabhudev, G. A. Botton, J. R. Salvador, F. Borondics, Z. Liuf, H. Kleinke, Dalton Trans. 43, 14983–14991 (2014).

    Article  CAS  Google Scholar 

  23. J. Zhao, Z. Liu, J. Reid, K. Takarabe, T. Iida, B. Wang, U. Yoshiya, J. S. Tse, J. Mater. Chem. A 3, 19774–19782 (2015).

    Article  CAS  Google Scholar 

  24. Y. Isoda, S. Tada, H. Kitagawa, Y. Shinohara, J. Electronic Materials 45, 1772–1778 (2016).

    Article  CAS  Google Scholar 

  25. P. Nieroda, J. Leszczynski, A. Kolezynski, J. Physics and Chemistry of Solids 103, 147–159 (2017).

    Article  CAS  Google Scholar 

  26. K. Kaur, R. Kumar, J. Electronic Materials 46, 4682–4689 (2017).

    Article  CAS  Google Scholar 

  27. Y. Hayashibara, K. Hayashi, I. Ando, M. Kubouchi, Y. Ogawa, W. Saito, Y. Miyazaki, Materials Transactions, 59, 1041–1045 (2018).

    Article  CAS  Google Scholar 

  28. D. Kato, K. Iwasaki, M. Yoshino, T. Yamada, T. Nagasaki, J. Solid State Chemistry 258, 93–98 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Itoh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, T., Nakano, T. Optimization of Degreasing-Sintering Process for Mg2Si/PLA Mixture and Influences of Additive Amount of Al on Sintered Density and Thermoelectric Performance of Mg2Si Fabricated by the Optimized Process. MRS Advances 5, 459–467 (2020). https://doi.org/10.1557/adv.2020.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.87

Navigation