Log in

Evolution of cations speciation during the initial leaching stage of alkali-borosilicate-glasses

  • Article
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Alkali-borosilicate glasses (ABS) are used as host immobilization matrices for different radioactive waste streams and are characterized by their ability to incorporate a wide variety of metal oxides with respectively high waste loadings. The vitreous wasteform is also characterized by very good physical and chemical durability. The durability of three ABS compositions were analyzed by investigating their leaching behavior using the MCC1 test protocol and these data were used to investigate the waste components retention in the altered layer and the evolution of the interfacial water composition during the test. The results indicated that the Mg species evolution is exceptional with respect to other alkaline elements and dependent on glass matrix composition and leaching progress, while transition elements speciation is fairly constant throughout leaching process and independent on glass compositions. Si and B species are changing during leaching process and are affected by waste composition. For modified wasteform sample, evolution of Mg, Si and B species is respectively constant, whereas at highest waste loading, these elements have fairly constant speciation evolution within the first 2 weeks of leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.O. Abdel Rahman, A.M. El Kamash, A.A. Zaki, M.R. El Sourougy, In Proceedings of the International Conference on the Safety of Radioactive Waste Disposal (IAEA, Vienna, 2005) IAEA-CN-135/81, p. 317

    Google Scholar 

  2. R.O. Abdel Rahman, M.W. Kozak, Y.T. Hung, In Handbook of Environment and Waste Management, edited by Y.T. Hung, L.K. Wang, N.K. Shammas (World Scientific Publishing Co., Singapore, 2014)p. 949.

  3. R.O. Abdel Rahman, A.M. El-Kamash, A.A. Zaki, Hazard. Mater. 145, 372–380 (2007).

    Article  CAS  Google Scholar 

  4. NEA, The Safety Case for Deep Geological Disposal of Radioactive Waste, (NEA, Paris, 2013)

    Google Scholar 

  5. NEA, Scenario Development Workshop Synopsis, Integration Group for the Safety Case, (NEA, Paris, 2016)

    Google Scholar 

  6. NEA, Managing Information and Requirements in Geological Disposal Programmes, (NEA, Paris, 2018)

    Google Scholar 

  7. NEA, Updating the NEA International FEP List: An IGSC Technical Note Technical Note 2: Proposed Revisions to the NEA International FEP List, (NEA, Paris, 2014)

    Google Scholar 

  8. R.O. Abdel Rahman, Michael I. Ojovan, Innov. Corrosion Mater. Sci. 4 (2), 90–95 (2014).

    Google Scholar 

  9. O. Menard, T. Advocat, J. P. Ambrosi, A. Michard, Appl. Geochem. 13, 105–126 (1998).

    Article  CAS  Google Scholar 

  10. R.O. Abdel Rahman, D.H. Zein, H. Abo Shadi, Chem. Eng. J. 228, 772–780 (2013).

    Article  CAS  Google Scholar 

  11. R.O. Abdel Rahman, D.H. Zein, H. Abo Shadi, Chem. Eng. J. 245, 276–287 (2014).

    Article  CAS  Google Scholar 

  12. Z. Drace, I. Mele, M.I. Ojovan, R.O. Abdel Rahman. Mater. Res. Soc. Symp. Proc. 1475, 253–264 (2012).

    Google Scholar 

  13. IAEA, Radioactive waste management glossary (IAEA, Vienna, 2003).

    Google Scholar 

  14. Rehab O. Abdel Rahman, Ravil Z. Rakhimov, Nailya R. Rakhimova, Michael I. Ojovan, Cementitious materials for nuclear waste immobilization, (Wiley, New York, 2014).

    Google Scholar 

  15. Osama M. Farid, R.O. Abdel Rahman, Mater. Chem. Phy. 186, 462–469(2017).

    Article  CAS  Google Scholar 

  16. Osama M. Farid, Michael I. Ojovan, A. Massoud, R.O. Abdel Rahman, Materials 12(9) 1462 (2019).

    Article  CAS  Google Scholar 

  17. M.I. Ojovan, W.E. Lee. An Introduction to Nuclear Waste Immobilisation (Elsevier, Amsterdam, 2014) p. 362.

    Google Scholar 

  18. M.I. Ojovan. Handbook of Advanced Radioactive Waste Conditioning Technologies (Woodhead, Cambridge, 2011) p. 512.

    Book  Google Scholar 

  19. The National Academies Press. Waste Forms Technology and Performance: Final Report. Committee on Waste Forms Technology and Performance (National Research Council: Washington, 2011) p. 340

    Google Scholar 

  20. T. Ma, A.P. Jivkov, W. Li, W. Liang, Y. Wang, H. Xu, X. Han, J. Nucl. Mater. 486, 70–85 (2017).

    Article  CAS  Google Scholar 

  21. C.M. Jantzen, C.L. Trivelpiece, C.L. Crawford, J.M. Pareizs, J.B. Pickett, Int. J. Appl. Glass Sci. 8, 69–83 (2017).

    Article  CAS  Google Scholar 

  22. J.J. Neeway, P.C. Rieke, B.P. Parruzot, J.V. Ryan, R.M. Asmussen, Geochim. Cosmochim. Acta 226, 132–148 (2018).

    Article  CAS  Google Scholar 

  23. R. Guoa, C.T. Brigdena, S. Ginb, S.W. Swantonc, I. Farnana, J. Non-Cryst. Solids 497, 82–92 (2018).

    Article  Google Scholar 

  24. S. Gin, P. Jollivet, M. Fournier, C. Berthon, Z. Wang, A. Mitroshkov, Z. Zhu, J.V. Ryan, Geochim. Cosmochim. Acta 151, 68–85 (2015).

    Article  CAS  Google Scholar 

  25. Y. Inagaki, T. Kikunaga, K. Idemitsu, T. Arima, Int. J. Appl. Glass Sci. 4, 317–327 (2013).

    Article  CAS  Google Scholar 

  26. Kim, C.W. Lee, B.G.J. Korean Radioact. Waste Soc. 11, 1–9 (2013).

    Google Scholar 

  27. E. Curti, D. Grolimund, C.N. Borca, Appl. Geochem. 27, 56–63 (2012).

    Article  CAS  Google Scholar 

  28. E. Curti, R. Dahn, F. Farges, M. Vespa, Geochim. Cosmochim. Acta 73, 2283–2298 (2009).

    Article  CAS  Google Scholar 

  29. P. Jollivet, F. Angeli, C. Cailleteau, F. Devreux, P. Frugier, S. Gin, J. Non-Cryst. Solids 354, 4952–4958 (2008).

    Article  CAS  Google Scholar 

  30. H.K. Manaktala, An Assessment of Borosilicate Glass as a High-level Waste Form, (NRC, USA, 1992).

    Google Scholar 

  31. M.I. Ojovan, W.E. Lee, Metall. Mater. Trans. A 42, 837–851 (2011).

    Google Scholar 

  32. P. Trocellier, S. Djanarthany, J. Chene, A. Haddi, A.M. Brass, S. Poissonnet, F. Farges, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater At. 240 (1–2) 337–344 (2005).

    Article  CAS  Google Scholar 

  33. D. L. Dugger, J. H. Stanton, B. N. Irby, B. L. McConnel, W. W. Cummings, and R. W. Maatman, J. Phys. Chem. 68, 757–760 (1964).

    Article  CAS  Google Scholar 

  34. Leaching of glass waste structure and humidity cell tests (2019). available at: https://uu.diva-portal.org/smash/get/diva2:1331420/FULLTEXT01.pdf (accessed 22 October 2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. O. Abdel Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, O.M., Ojovan, M.I. & Abdel Rahman, R.O. Evolution of cations speciation during the initial leaching stage of alkali-borosilicate-glasses. MRS Advances 5, 185–193 (2020). https://doi.org/10.1557/adv.2020.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.39

Navigation