Log in

Multi-step sintering processing of ferrites having enhanced magnetic properties

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Traditional synthesis of high-performance bulk ferrites include complex sintering procedures where temperature and soak times to obtain high densities and excellent magnetic properties. Most ferrites must be sintered at hundreds degree centigrade approaching or surpassing 1000oC, and for YIG (yttrium iron garnet), the sintering temperature should be approximately 1450°C. The high sintering temperatures limit the applications of ferrites, for example, the low temperature co-sintering of ceramics with silver electrodes and/or ground planes. For decades, researchers have explored the use of ion-do**, sintering aids, and microstructural refinement. Here, we study the optimization of the sintering profile including multiples temperature and soak times for doped Bi-YIG simples. The results show an improvement in soft magnetic and gyromagnetic properties attributed to the homogenization of grain size and morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris VG. Modern Microwave Ferrites. IEEE Trans Magn. 2012;48(3):1075–1104.

    Article  CAS  Google Scholar 

  2. Liu H, Wu J, Zhuang Q, Dang A, Li T, Zhao T. Preparation and the electromagnetic interference shielding in the X-band of carbon foams with Ni-Zn ferrite additive. J Eur Ceram Soc. 2016;36(16):3939–3946.

    Article  CAS  Google Scholar 

  3. Imanaka Y. Multilayered low temperature cofired ceramics (LTCC) technology. New York: Springer; 2005.

    Google Scholar 

  4. Sebastian MT, Jantunen H. Low loss dielectric materials for LTCC applications: a review. Int Mater Rev. 2008;53(2):57–90.

    Article  CAS  Google Scholar 

  5. Gongora-Rubio MR, Espinoza-Vallejos P, Sola-Laguna L, Santiago-Aviles JJ. Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST). Sens Actuator A-Phys. 2001;89(3):222–241.

    Article  CAS  Google Scholar 

  6. Dernovsek O, Naeini A, Preu G, Wersing W, Eberstein M, Schiller WA. LTCC glass-ceramic composites for microwave application. J Eur Ceram Soc. 2001;21(10–11):1693–1697.

    Article  CAS  Google Scholar 

  7. Serga AA, Chumak AV, Hillebrands B. YIG magnonics. J Phys D-Appl Phys. 2010;43(26):16.

    Article  Google Scholar 

  8. Shastry S, Srinivasan G, Bichurin MI, Petrov VM, Tatarenko AS. Microwave magnetoelectric effects in single crystal bilayers of yttrium iron garnet and lead magnesium niobate-lead titanate. Physical Review B. 2004;70(6):6.

    Article  Google Scholar 

  9. Sun YY, Song YY, Chang HC, Kabatek M, Jantz M, Schneider W, et al. Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films. Appl Phys Lett. 2012;101(15):5.

    Article  Google Scholar 

  10. Krawczyk M, Grundler D. Review and prospects of magnonic crystals and devices with reprogrammable band structure. J Phys-Condes Matter. 2014;26(12):32.

    Article  Google Scholar 

  11. Fetisov YK, Srinivasan G. Electric field tuning characteristics of a ferrite-piezoelectric microwave resonator. Appl Phys Lett. 2006;88(14):3.

    Article  Google Scholar 

  12. Bichurin MI, Petrov VM, Kiliba YV, Srinivasan G. Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Physical Review B. 2002;66(13):10.

    Article  Google Scholar 

  13. Olmsted DL, Foiles SM, Holm EA. Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Materialia. 2009;57(13):3694–3703.

    Article  CAS  Google Scholar 

  14. Olmsted DL, Holm EA, Foiles SM. Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility. Acta Materialia. 2009;57(13):3704–3713.

    Article  CAS  Google Scholar 

  15. Sutton AP, Balluffi RW. Interfaces in crystalline materials. OxfordNew York: Clarendon Press; Oxford University Press; 1995.

    Google Scholar 

  16. Holm EA, Foiles SM. How Grain Growth Stops: A Mechanism for Grain-Growth Stagnation in Pure Materials. Science. 2010;328(5982):1138–1141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, N., Zhang, H. & Harris, V.G. Multi-step sintering processing of ferrites having enhanced magnetic properties. MRS Advances 4, 41–50 (2019). https://doi.org/10.1557/adv.2019.39

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.39

Navigation