Log in

Characterization of genes encoding Starch Branching Enzyme I from Triticum monococcum and its diploid wheat relatives

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The Starch Branching Enzyme I (SBEI) gene plays an important role in amylopectin synthesis. Here, we isolated and characterized the full-length cDNA and DNA sequences of SBEI gene from diploid Triticeae species, Triticum monococcum, T. urartu, Aegilopsspeltoides, and Ae. tauschii. Then we predicted its protein structure, analyzed its evolutionary relationship with other species, and explored its expression patterns using real-time quantitative PCR. The SBEI cDNA includes a 2,490-bp open reading frame (ORF) encoding 829 amino acids. The genomic DNA of SBEI is 5,526-bp in length, containes fourteen exons and thirteen introns, and shares a similar structure with its homologous genes from other cereal plants. Sequence similarity ranging from 70.50% to 98.02% in exons and from 15.50% to 83.63% in introns was detected. Results of phylogenetic tree based on the deduced amino acid sequences from T. monococcum and other plants indicated that T. monococcum SBEI is more closely related to T. boeoticum and T. urartu. Expression analysis revealed that T. monococcum SBEI and AGPase genes were highly expressed in the seeds at middle developmental stage. This is the first report on characterization of the SBEI gene in T. monococcum. These results could be used to explore the roles of this enzyme in amylopectin synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baba T., Kimura K., Mizuno K., Etoh H., Ishida Y., Shida O. et al. 1991. Sequence conservation of the catalytic regions of anylolytic enzymes in maize branching enzyme I. Biochem. Biophys. Res. Comm. 181: 87–94.

    Article  CAS  Google Scholar 

  • Ball S., Guan H.P., James M., Myers A., Keeling P., Mouille G., et al. 1996. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86: 349–352.

    Article  CAS  Google Scholar 

  • Burton R. A., Bewley J.D., Smith A.M., Bhattacharyya M.K., Tatge H., Ring S., Bull V., et al. 1995. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 7: 3–15.

    Article  CAS  Google Scholar 

  • Chen W. H., Lv G,. Lv C, Zeng C. & Hu S. 2007. Systematic analysis of alternative first exons in plant genomes. BMC Plant Biol. 7: 55.

    Article  Google Scholar 

  • Dvorak J., McGuire P.E. & Cassidy B. 1988. Apparent sources of the a genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30: 680–689.

    Article  CAS  Google Scholar 

  • Filichkin S. A., Priest H.D., Givan S.A., Shen R., Bryant D.W., Fox S.E., et al. 2010. Genome-wide map** of alternative splicing in Arabidopsis thaliana. Genome Res. 20: 45–58.

    Article  CAS  Google Scholar 

  • Fisher D. K., Kim K.N, M. Gao M., Boyer C.D. & Guiltinan M.J. 1995. A cdna encoding starch branching enzyme I from maize endosperm. Plant Physiol. 108: 1313.

  • Fisher D. K., Gao M., Kim K.N., Boyer C.D. & Guiltinan M.J. 1996. Two closely related cdnas encoding starch branching enzyme from Arabidopsis thaliana. Plant Mol. Biol. 30: 97–108.

    Article  CAS  Google Scholar 

  • Hamada T., Kim S.H. & Shimada T. 2006. Starch-branching enzyme I gene (IbsbeI) from sweet potato (Ipomoea batatas); molecular cloning and expression analysis. Biotech. Letters 28: 1255–1261.

    CAS  Google Scholar 

  • Han Y., Gasic K., Sun F., Xu M. & Korban S.S. 2007. A gene encoding starch branching enzyme I (sbeI) in apple (Malus domestica, Rosaceae) and its phylogenetic relationship to sbegenes from other angiosperms. Mol. Phylogen. Evol. 43: 852–863.

    Article  CAS  Google Scholar 

  • James M. G., Denyer K. & Myers A.M. 2003. Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6: 215–222.

    Article  CAS  Google Scholar 

  • Jiang Q. T., Liu T., Ma J., Wei Y.M., Lu Z.X, Lan X.J., et al. 2011 Characterization of barley prp1 gene and its expression during seed development and under abiotic stress. Genetica 139: 1283–1292.

    Article  CAS  Google Scholar 

  • Kawasaki T., Mizuno K. Baba T. & Shimada H. 1993. Molecular analysis of the gene encoding a rice starch branching enzyme. Mol. Gen. Genet. 237: 10–16.

    CAS  PubMed  Google Scholar 

  • Kim K. N., Fisher D.K., Gao M. & Guiltinan M.J. 1998. Genomic organization and promoter activity of the maize starch branching enzyme I gene. Gene 216: 233–243.

    Article  CAS  Google Scholar 

  • Koßmann J., Visser R.G., Müller-Röber B., Willmitzer L. & Sonnewald U. 1991. Cloning and expression analysis of a potato cdna that encodes branching enzyme evidence for co-expression of starch biosynthetic genes. Mol. Gen. Genet. 230: 39–44.

    Article  Google Scholar 

  • Ma J., Jiang Q.T., Zhao Q.Z., Zhao S., Lan X.J., Dai S.F., et al. 2013. Characterization and expression analysis of waxy alleles in barley accessions. Genetica. 141: 227–238.

    Article  CAS  Google Scholar 

  • Martin C. & Smith A.M. 1995. Starch biosynthesis. Plant Cell 7: 971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morell M. K., Blennow A., Kosar-Hashemi B. & Samuel M.S. 1997. Differential expression and properties of starch branching enzyme isoforms in develo** wheat endosperm. Plant Physiol. 113: 201–208.

    Article  CAS  Google Scholar 

  • Murray M.G. & Thompson W.F. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321–4325.

    Article  CAS  Google Scholar 

  • Nakajima R., Imanaka T. & S. Aiba S. 1986. Comparison of amino acid sequences of eleven different α-amylases. Appl. Microb. Biotechnol. 23: 355–360.

    Article  CAS  Google Scholar 

  • Nakamura Y. 2002 Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol. 43: 718–725.

    Article  CAS  Google Scholar 

  • Nakkanong K., Yang J.H. & Zhang M.F. 2012. Starch accumulation and starch related genes expression in novel inter-specific inbred squash line and their parents during fruit development. Sci. Hort. 136: 1–8.

    Article  CAS  Google Scholar 

  • Paolacci A. R., Tanzarella O.A., Porceddu E. & Ciaffi M. 2009. Identification and validation of reference genes for quantitative rt-pcr normalization in wheat. BMC Mol. Biol. 10: 11.

    Article  Google Scholar 

  • Rahman S., Morell M., Appels R., Abrahams S., Abbott D., Samuel M. et al. 1997. A complex arrangement of genes at a starch branching enzyme i locus in the d-genome donor of wheat. Genome 40: 465–474.

    Article  CAS  Google Scholar 

  • Satoh H., Nishi, K. Yamashita A., Takemoto Y., Tanaka Y., Hosaka Y., et al. 2003. Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiol. 133: 1111–1121.

    Article  CAS  Google Scholar 

  • Sun C., Sathish P., Ahlandsberg S., Deiber A. & Jansson C. 1997. Identification of four starch-branching enzymes in barley endosperm: partial purification of forms i, iia and iib. New Phytol. 137: 215–222.

    Article  CAS  Google Scholar 

  • Sun C., Sathish P., Ahlandsberg S. & Jansson C. 1998. The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol. 118: 37–49.

    Article  CAS  Google Scholar 

  • Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013. Mega6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725–2729.

    Article  CAS  Google Scholar 

  • Tetlow I.J. 2006 Understanding storage starch biosynthesis in plants: A means to quality improvement. Can. J. Bot. 84: 1167–1185.

    Article  CAS  Google Scholar 

  • Tetlow I.J. & Emes M.J. 2014. A review of starch-branching enzymes and their role in amylopectin biosynthesis. IUBMB life 66: 546–558.

    Article  CAS  Google Scholar 

  • Tetlow I. J., Morell M.K. & Emes M.J. 2004. Recent developments in understanding the regulation of starch metabolism in higher plants. J. Exp. Bot. 55: 2131–2145.

    Article  CAS  Google Scholar 

  • Thompson J. D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.

    Article  CAS  Google Scholar 

  • Zheng K., Xu J., Jiang Q., Laroche A., Wei Y., Zheng Y. et al. 2013. Isolation and characterization of an isoamylase gene from rye. Crop J. 1: 127–133.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the International Science & Technology Cooperation Program of China (No. 2015DFA30600). We appreciate the anonymous referees for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian-Tao Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Wang, CS., Ma, J. et al. Characterization of genes encoding Starch Branching Enzyme I from Triticum monococcum and its diploid wheat relatives. Biologia 70, 1193–1200 (2015). https://doi.org/10.1515/biolog-2015-0134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0134

Key words

Navigation