Log in

Use of Spray-Dried Dispersions in Early Pharmaceutical Development: Theoretical and Practical Challenges

  • Review Article
  • Theme: Next Generation Formulation Design: Innovations in Material Selection and Functionality
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Spray-dried dispersions (SDDs) have become an important formulation technology for the pharmaceutical product development of poorly water-soluble (PWS) compounds. Although this technology is now widely used in the industry, especially in the early-phase development, the lack of mechanistic understanding still causes difficulty in selecting excipients and predicting stability of SDD-based drug products. In this review, the authors aim to discuss several principles of polymer science pertaining to the development of SDDs, in terms of selecting polymers and solvents, optimizing drug loading, as well as assessing physical stability on storage and supersaturation maintenance after dissolution, from both thermodynamic and kinetic considerations. In order to choose compatible solvents with both polymers and active pharmaceutical ingredients (APIs), a symmetric Flory-Huggins interaction (Δχ ∼0) approach was introduced. Regarding spray drying of polymer-API solutions, low critical solution temperature (LCST) was discussed for setting the inlet temperature for drying. In addition, after being exposed to moisture, SDDs are practically converted to ternary systems with asymmetric Flory-Huggins interactions, which are thermodynamically not favored. In this case, the kinetics of phase separation plays a significant role during the storage and dissolution of SDD-based drug products. The impact of polymers on the supersaturation maintenance of APIs in dissolution media was also discussed. Moreover, the nature of SDDs, with reference to solid solution and the notion of solid solubility, was examined in the context of pharmaceutical application. Finally, the importance of robust analytical techniques to characterize the SDD-based drug products was emphasized, considering their complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci. 2012;101(4):1355–77.

    Article  CAS  PubMed  Google Scholar 

  2. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci. 1999;88(10):1058–66.

    Article  CAS  PubMed  Google Scholar 

  3. Dixit ND, Niranjan SK. A review: solid dispersion. World J Pharm Pharm Sci. 2014;3(9):238–57. 20 pp.

    Google Scholar 

  4. Kadam VS, Bharakhad VS, Jadhav SB, Kute A, Chintale AG. Role of solid dispersion in improving solubilty and dissolution rate: a comprehensive review. World J Pharm Res. 2014;3(2):1841–60. 20 pp.

    Google Scholar 

  5. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    Article  CAS  PubMed  Google Scholar 

  6. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Mol Pharm. 2014;11(11):4228–37.

    Article  CAS  PubMed  Google Scholar 

  7. Chauhan H, Hui-Gu C, Atef E. Correlating the behavior of polymers in solution as precipitation inhibitor to its amorphous stabilization ability in solid dispersions. J Pharm Sci. 2013;102(6):1924–35.

    Article  CAS  PubMed  Google Scholar 

  8. Curatolo W, Nightingale JA, Herbig SM. Utility of hydroxypropylmethylcellulose acetate succinate (HPMCAS) for initiation and maintenance of drug supersaturation in the GI milieu. Pharm Res. 2009;26(6):1419–31.

    Article  CAS  PubMed  Google Scholar 

  9. Friesen DT, Shanker R, Crew M, Smithey DT, Curatolo WJ, Nightingale JAS. Hydroxypropyl methylcellulose acetate succinate-based spray-dried dispersions: an overview. Mol Pharm. 2008;5(6):1003–19.

    Article  CAS  PubMed  Google Scholar 

  10. Paudel A, Worku ZA, Meeus J, Guns S, Van den Mooter G. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm (Amsterdam, Neth). 2013;453(1):253–84.

    CAS  Google Scholar 

  11. Vaka SRK, Bommana MM, Desai D, Djordjevic J, Phuapradit W, Shah N. Excipients for amorphous solid dispersions. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, editors. Amorphous solid dispersions: theory and practices. 1. New York: Springer; 2014. p. 123–61.

    Google Scholar 

  12. Tachibana T, Nakamura A. A method of preparing an aqueous colloidal dispersion of organic materials by using water-soluble polymers: dispersion of β-carotene by poly(vinylpyrrolidinone). Kolloid-Z. 1965;203(2):130–3.

    Article  CAS  Google Scholar 

  13. Taylor LS, Hancock BC. George Zografi and the science of solids and surfaces. J Pharm Sci. 2014;103(9):2592–4.

    Article  CAS  PubMed  Google Scholar 

  14. Hancock BC, Zografi G. The use of solution theories for predicting water vapor absorption by amorphous pharmaceutical solids: a test of the Flory-Huggins and Vrentas models. Pharm Res. 1993;10(9):1262–7.

    Article  CAS  PubMed  Google Scholar 

  15. Ormes JD, Zhang D, Chen AM, Hou S, Krueger D, Nelson T, et al. Design of experiments utilization to map the processing capabilities of a micro-spray dryer: particle design and throughput optimization in support of drug discovery. Pharm Dev Technol. 2013;18(1):121–9.

    Article  CAS  PubMed  Google Scholar 

  16. Klenin VJ. Thermodynamics of systems containing flexible-chain polymers. Amsterdam: Elsevier; 1999. 850 pp.

    Google Scholar 

  17. Scott RL. The thermodynamics of high-polymer solutions. IV. Phase equilibria in the ternary system: polymer-liquid 1-liquid 2. J Chem Phys. 1949;17:268–79.

    Article  CAS  Google Scholar 

  18. Tompa H. Polymer solutions. Amsterdam: Academic; 1956. 325 pp.

    Google Scholar 

  19. Zeman L, Patterson D. Effect of the solvent on polymer incompatibility in solution. Macromolecules. 1972;5(4):513–6.

    Article  CAS  Google Scholar 

  20. Deshpande DD, Patterson D, Schreiber HP, Su CS. Thermodynamic interactions in polymer systems by gas-liquid chromatography. IV. Interactions between components in a mixed stationary phase. Macromolecules. 1974;7(4):530–5.

    Article  CAS  Google Scholar 

  21. Hansen CM. Hansen solubility parameters: a user’s handbook. New York: CRC; 2007.

    Book  Google Scholar 

  22. Hildebran JH, Scott RL. The solubility of nonelectrolytes. 3rd ed. Dover; 1964. 488 pp. p.

  23. van Krevelen DW. Properties of polymers. 3rd ed. Amsterdam: Elsevier Science; 1997.

    Google Scholar 

  24. Teraoka I. Polymer solutions: an introduction to physical properties. New York: Wiley-Interscience; 2002. 400 pp.

    Book  Google Scholar 

  25. Flory PJ. Principles of polymer chemistry. Ithaca: Cornell University Press; 1953. 672 pp.

    Google Scholar 

  26. Kamide K, Dobashi T. Physical chemistry of polymer solutions. The Netherlands: Elsevier; 2000.

    Google Scholar 

  27. Buhler V. Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone. New York: Springer; 2005.

    Google Scholar 

  28. Graessley WW. Polymeric liquids and networks: structure and properties. Garland Science; 2003. 559 pp.

  29. Ngai KL. Relaxation and diffusion in complex systems. New York: Springer; 2011.

    Book  Google Scholar 

  30. Litvinov VM, Guns S, Adriaensens P, Scholtens BJR, Quaedflieg MP, Carleer R, et al. Solid state solubility of miconazole in poly[(ethylene glycol)-g-vinyl alcohol] using hot-melt extrusion. Mol Pharm. 2012;9(10):2924–32.

    Article  CAS  PubMed  Google Scholar 

  31. Paudel A, Nies E, Van den Mooter G. Relating hydrogen-bonding interactions with the phase behavior of naproxen/PVP K 25 solid dispersions: evaluation of solution-cast and quench-cooled films. Mol Pharm. 2012;9(11):3301–17.

    Article  CAS  PubMed  Google Scholar 

  32. Paudel A, Van Humbeeck J, Van den Mooter G. Theoretical and experimental investigation on the solid solubility and miscibility of naproxen in poly(vinylpyrrolidone). Mol Pharm. 2010;7(4):1133–48.

    Article  CAS  PubMed  Google Scholar 

  33. Sun Y, Tao J, Zhang GGZ, Yu L. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci. 2010;99(9):4023–31.

    Article  CAS  PubMed  Google Scholar 

  34. Paudel A, Van den MG. Influence of solvent composition on the miscibility and physical stability of naproxen/PVP K 25 solid dispersions prepared by cosolvent spray-drying. Pharm Res. 2012;29(1):251–70.

    Article  CAS  PubMed  Google Scholar 

  35. Utracki LA. Polymer alloys and blends: thermodynamics and rheology. Tokyo Kagaku Do** Co., Ltd.; 1991. 448 pp.

  36. Bhattacharya S, Suryanarayanan R. Local mobility in amorphous pharmaceuticals—characterization and implications on stability. J Pharm Sci. 2009;98(9):2935–53.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Zhao J, Tao L, Wang J, Waknis V, Pan D, et al. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: part I, free volume and glass transition. Pharm Res. 2015;32(2):500–15.

    Article  CAS  PubMed  Google Scholar 

  38. Worku ZA, Aarts J, Singh A, Van den Mooter G. Drug-polymer miscibility across a spray dryer: a case study of naproxen and miconazole solid dispersions. Mol Pharm. 2014;11(4):1094–101.

    Article  CAS  PubMed  Google Scholar 

  39. Wyttenbach N, Janas C, Siam M, Lauer ME, Jacob L, Scheubel E, et al. Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems. Eur J Pharm Biopharm. 2013;84(3):583–98.

    Article  CAS  PubMed  Google Scholar 

  40. Wu B, Li J, Wang Y. Evaluation of the microcentrifuge dissolution method as a tool for spray-dried dispersion. AAPS J. 2016;18(2):346–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bi Y, Rahman MA, Lester JD, Durig T, Bull R, inventors; ISP Investments Inc., USA. Assignee. Preparation of highly loaded amorphous efavirenz compositions patent US20140148449A1. 2014.

  42. Singh SK, Rathore DS. Design, development and characterization of NSAID’s loaded with solid dispersion by different hydrophilic carriers. Int J Res Pharm Biomed Sci. 2012;3(4):1549–58.

    CAS  Google Scholar 

  43. Baumann J, Dobry D, Ray R. Amorphous dispersion formulation development: phase-appropriate integrated approaches to optimizing performance, manufacturability, stability & dosage form. Drug Dev Deliv. 2013;13(6):30. 2-7.

    CAS  Google Scholar 

  44. Iyer R, Shah N, Sandha H, Choi DS, Chokshi H, Malick AW. Pharmaceutical development of MBP solid dispersions: case studies. In: Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW, editors. Amorphous solid dispersions: theory and practice. 1st ed. New York: Springer; 2014. p. 373–94.

    Google Scholar 

  45. Delmas G, Patterson D, Bhattacharyya SN. Heats of mixing of polymers with mixed-solvent media. J Phys Chem. 1964;68(6):1468–74.

    Article  CAS  Google Scholar 

  46. Delmas G, Patterson DD. New aspects of polymer solution thermodynamics. Off Dig Fed Soc Paint Technol. 1962;34:677–92.

    CAS  Google Scholar 

  47. Patterson D. Heats of mixing of polymers with ester and ether solvents. J Polym Sci, Part A: Gen Pap. 1964;2(12):5177–85.

    CAS  Google Scholar 

  48. Des Cloizeaux J, Jannink G. Polymers in solution: their modelling and structure. New York: Oxford University Press; 1990.

    Google Scholar 

  49. Martinez F, Pena MA, Bustamante P. Thermodynamic analysis and enthalpy-entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib. 2011;308(1-2):98–106.

    Article  CAS  Google Scholar 

  50. Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226(1-2):147–61.

    Article  CAS  PubMed  Google Scholar 

  51. Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. Int J Pharm. 2011;407(1-2):63–71.

    Article  CAS  PubMed  Google Scholar 

  52. Masters K. Spray drying handbook. 3rd ed. George Godwin Ltd.; 1979. 687 pp.

  53. Rattes ALR, Oliveira WP. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol. 2007;171(1):7–14.

    Article  CAS  Google Scholar 

  54. Arslan Y, Goeksu C, Yigit A, inventors; Fako Ilaclari A.S., Turk. Assignee. Formulation of non-crystalline cefuroxime axetil solid dispersant for an oral suspension patent TR2003001075A2. 2005.

  55. Bobba SKV, Patel GB, Kodali ER, Suryawanshi AG, inventors; Enaltec Labs Private Limited, India. Assignee. Preparation of an amorphous form of febuxostat patent IN2009MU01344A. 2010.

  56. Koningsveld R, Stockmayer WH, Nies E. Polymer phase diagrams: a textbook. Oxford University Press; 2001. 341 pp.

  57. Cowie JMG, Arrighi V. Polymers: chemistry and physics of modern materials. Boca Raton: CRC; 2008.

    Google Scholar 

  58. Gedde UW. Polymer physics. London: Chapman & Hall; 1995.

    Google Scholar 

  59. Patterson DD. Free volume and polymer solubility. Qualitative view. Macromolecules. 1969;2(6):672–7.

    Article  CAS  Google Scholar 

  60. Siow KS, Delmas G, Patterson D. Cloud-point curves in polymer solutions with adjacent upper and lower critical solution temperatures. Macromolecules. 1972;5(1):29–34.

    Article  CAS  Google Scholar 

  61. Flory PJ, Orwoll RA, Vrij A. Statistical thermodynamics of chain molecule liquids. II. Liquid mixtures of normal paraffin hydrocarbons. J Am Chem Soc. 1964;86(17):3515–20.

    Article  CAS  Google Scholar 

  62. Patterson DD, Delmas G. Corresponding states theories and liquid models. Discuss Faraday Soc. 1970; No. 49:98-105.

  63. Prigogine I. The molecular theory of solutions. M. Nijhoff; 1957. 450 pp.

  64. Liu H. Science and engineering of droplets: fundamentals and applications. William Andrew; 2000. 225 pp.

  65. Guo Y, Shalaev E, Smith S. Physical stability of pharmaceutical formulations: solid-state characterization of amorphous dispersions. TrAC Trends Anal Chem. 2013;49:137–44.

    Article  CAS  Google Scholar 

  66. Chen Y, Liu C, Chen Z, Su C, Hageman M, Hussain M, et al. Drug-polymer-water interaction and its implication for the dissolution performance of amorphous solid dispersions. Mol Pharm. 2015;12(2):576–89.

    Article  CAS  PubMed  Google Scholar 

  67. **ang T-X, Anderson BD. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions. J Pharm Sci. 2013;102(3):876–91.

    Article  CAS  PubMed  Google Scholar 

  68. Vrentas JS, Duda JL. Diffusion of small molecules in amorphous polymers. Macromolecules. 1976;9(5):785–90.

    Article  CAS  Google Scholar 

  69. Donth E. the glass transition: relaxation dynamics in liquids and disordered materials. Springer; 2001. No pp. given p.

  70. Ferry JD. Viscoelastic properties of polymers. New York: Wiley; 1980.

    Google Scholar 

  71. Doherty C, York P. Accelerated stability of an x-ray amorphous frusemide-polyvinylpyrrolidone solid dispersion. Drug Dev Ind Pharm. 1989;15(12):1969–87.

    Article  CAS  Google Scholar 

  72. Ghosh I, Snyder J, Vippagunta R, Alvine M, Vakil R, Tong W-Q, et al. Comparison of HPMC based polymers performance as carriers for manufacture of solid dispersions using the melt extruder. Int J Pharm. 2011;419(1-2):12–9.

    Article  CAS  PubMed  Google Scholar 

  73. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50(1):47–60.

    Article  CAS  PubMed  Google Scholar 

  74. Guzman HR, Tawa M, Zhang Z, Ratanabanangkoon P, Shaw P, Gardner CR, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci. 2007;96(10):2686–702.

    Article  CAS  PubMed  Google Scholar 

  75. Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci. 2009;98(8):2549–72.

    Article  CAS  PubMed  Google Scholar 

  76. He Y, Ho C. Amorphous solid dispersions: utilization and challenges in drug discovery and development. J Pharm Sci. 2015;104(10):3237–58.

    Article  CAS  PubMed  Google Scholar 

  77. Prasad D, Chauhan H, Atef E. Role of molecular interactions for synergistic precipitation inhibition of poorly soluble drug in supersaturated drug–polymer–polymer ternary solution. Mol Pharm. 2016;13(3):756–65.

    Article  CAS  PubMed  Google Scholar 

  78. Purohit HS, Taylor LS. Phase separation kinetics in amorphous solid dispersions upon exposure to water. Mol Pharm. 2015;12(5):1623–35.

    Article  CAS  PubMed  Google Scholar 

  79. Jackson MJ, Toth SJ, Kestur US, Huang J, Qian F, Hussain MA, et al. Impact of polymers on the precipitation behavior of highly supersaturated aqueous danazol solutions. Mol Pharm. 2014;11(9):3027–38.

    Article  CAS  PubMed  Google Scholar 

  80. Ilevbare GA, Liu H, Pereira J, Edgar KJ, Taylor LS. Influence of additives on the properties of nanodroplets formed in highly supersaturated aqueous solutions of ritonavir. Mol Pharm. 2013;10(9):3392–403.

    Article  CAS  PubMed  Google Scholar 

  81. Ilevbare GA, Taylor LS. Liquid–liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des. 2013;13(4):1497–509.

    Article  CAS  Google Scholar 

  82. Dai WG, Dong LC, Shi XF, Nguyen J, Evans J, Xu YD, et al. Evaluation of drug precipitation of solubility-enhancing liquid formulations using milligram quantities of a new molecular entity (NME). J Pharm Sci. 2007;96(11):2957–69.

    Article  CAS  PubMed  Google Scholar 

  83. Six K, Daems T, de Hoon J, Van Hecken A, Depre M, Bouche M-P, et al. Clinical study of solid dispersions of itraconazole prepared by hot-stage extrusion. Eur J Pharm Sci. 2005;24(2–3):179–86.

    Article  CAS  PubMed  Google Scholar 

  84. Agrawal AM, Dudhedia MS, Patel AD, Raikes MS. Characterization and performance assessment of solid dispersions prepared by hot melt extrusion and spray drying process. Int J Pharm (Amsterdam, Neth). 2013;457(1):71–81.

    CAS  Google Scholar 

  85. Vo CL-N, Park C, Lee B-J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur J Pharm Biopharm. 2013;85(3PB):799–813.

    Article  CAS  PubMed  Google Scholar 

  86. Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2007;24(2):203–27.

    Article  CAS  PubMed  Google Scholar 

  87. Gamble JF, Ferreira AP, Tobyn M, DiMemmo L, Martin K, Mathias N, et al. Application of imaging based tools for the characterisation of hollow spray dried amorphous dispersion particles. Int J Pharm (Amsterdam, Neth). 2014;465(1-2):210–7.

    CAS  Google Scholar 

  88. Damian F, Blaton N, Naesens L, Balzarini J, Kinget R, Augustijns P, et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci. 2000;10(4):311–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Munir Hussain for reviewing the manuscript and the DPST management for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **jiang Li.

Additional information

Guest Editors: Otilia M. Koo, Panayiotis P. Constantinides, Lavinia M. Lewis, and Joseph Reo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Patel, D. & Wang, G. Use of Spray-Dried Dispersions in Early Pharmaceutical Development: Theoretical and Practical Challenges. AAPS J 19, 321–333 (2017). https://doi.org/10.1208/s12248-016-0017-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-0017-9

Keywords

Navigation