Log in

The therapeutic potential of chia seeds as medicinal food: a review

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Poor lifestyle choices have led to people suffering from stress, high blood pressure, and a surge in cholesterol levels. Due to this, people are opting for the use of various functional foods that have more than one health benefit to combat such disorders. As a result, chia seeds (Salvia hispanica) have become immensely popular and are slowly being included in modern diet regimens to combat various health problems. Chia seed is known to be an abundant source of antioxidants. It is also considered to be a potential source of caffeic acid, chlorogenic acid myricetin, kaempferol, and quercetin. These are believed to have anti-carcinogenic, cardiac, anti-aging, and hepatic protective effect characteristics. At the moment, chia seeds are mostly being consumed to maintain a healthy serum lipid balance in the body. This is achieved due to the omega-3 and phenolic acid present in chia. However, there can be endless therapeutic possibilities when it comes to using chia as an alternative to traditional medicines to treat diseases like diabetes mellitus, cardiovascular diseases, and many digestive system disorders. Through this paper, we will review the therapeutic potential of chia seeds and their pharmaceutical design.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

None.

References

  1. Segura-Campos MR, Ciau-Solís N, Rosado-Rubio G, Chel-Guerrero L, Betancur-Ancona D. Chemical and functional properties of chia seed (Salvia hispanica L.) gum. Int J Food Sci. 2014;2014:241053. https://doi.org/10.1155/2014/241053.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mohd Ali N, Yeap SK, Ho WY, Beh BK, Tan SW, Tan SG. The promising future of chia, Salvia hispanica L. Biomed Res Int. 2012;2012:171956. https://doi.org/10.1155/2012/171956.

    Article  Google Scholar 

  3. Motyka S, Skała E, Ekiert H, Szopa A. Health-promoting approaches of the use of chia seeds. J Funct Foods. 2023;103:105480. https://doi.org/10.1016/j.jff.2023.105480.

    Article  CAS  Google Scholar 

  4. Nduko JM, Maina RW, Muchina RK, Kibitok SK. Application of chia (Salvia hispanica) seeds as a functional component in the fortification of pineapple jam. Food Sci Nutr. 2018;6(8):2344. https://doi.org/10.1002/fsn3.819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Baginsky C, Arenas J, Escobar H, Garrido M, Valero N, Tello D, et al. Growth and yield of chia (Salvia hispanica L.) in the Mediterranean and desert climates of Chile. Chilean J Agric Res. 2016;76(3):255–64. https://doi.org/10.4067/S0718-58392016000300001.

    Article  Google Scholar 

  6. Coates W. Production potential of chia in northwestern Argentina. Ind Crop Prod. 1996;5(3):229–33. https://doi.org/10.1016/0926-6690(96)89454-4.

    Article  Google Scholar 

  7. Jabeen, F. An overview: chia seed, chia seed oil, applications and its benefits.

  8. Khalid W, Arshad MS, Aziz A, Rahim MA, Qaisrani TB, Afzal F, et al. Chia seeds (Salvia hispanica L.): a therapeutic weapon in metabolic disorders. Food Sci Nutr. 2023;11(1):3–16. https://doi.org/10.1002/fsn3.3035.

    Article  PubMed  CAS  Google Scholar 

  9. Şengül AY. Possibilities of using chia oil as an omega-3 source in laying quail diets chia oil supplementation on quails. Braz J Poult Sci. 2022;24 https://doi.org/10.1590/1806-9061-2021-1444.

  10. Melo D, Machado TB, Oliveira MBPP. Chia seeds: an ancient grain trending in modern human diets. Food Funct. 2019;10(6):3068–89. https://doi.org/10.1039/c9fo00239a.

    Article  PubMed  CAS  Google Scholar 

  11. Grancieri M, Martino HSD, Gonzalez de Mejia E. Chia seed (Salvia hispanica L.) as a source of proteins and bioactive peptides with health benefits: a review. Compr Rev Food Sci Food Saf. 2019;18(2):480–99. https://doi.org/10.1111/1541-4337.12423.

    Article  PubMed  CAS  Google Scholar 

  12. Muñoz LA, Cobos A, Diaz O, Aguilera JM. Chia seed (Salvia hispanica): an ancient grain and a new functional food. Food Rev Intl. 2013;29(4):394–408. https://doi.org/10.1080/87559129.2013.818014.

    Article  CAS  Google Scholar 

  13. Ullah R, Nadeem M, Khalique A, Imran M, Mehmood S, Javid A, Hussain J. Nutritional and therapeutic perspectives of chia (Salvia hispanica L.): a review. J Food Sci Technol. 2016;53(4):1750–8. https://doi.org/10.1007/s13197-015-1967-0.

    Article  PubMed  CAS  Google Scholar 

  14. Guiotto EN, Ixtaina VY, Tomás MC, Nolasco SM. Moisture-dependent physical properties of chia (Salvia hispanica L.) seeds. Trans ASABE. 2011;54(2):527–33. https://doi.org/10.13031/2013.36455.

    Article  Google Scholar 

  15. Yalcin S, Atik İ, Atik A. Effects of chia flour as a fat substitute on the physicochemical, nutritional and sensory properties of biscuits. Int J Food Sci Technol. 2023; https://doi.org/10.1111/ijfs.16478.

  16. Kulczyński B, Kobus-Cisowska J, Taczanowski M, Kmiecik D, Gramza-Michałowska A. The chemical composition and nutritional value of chia seeds-current state of knowledge. Nutrients. 2019;11(6):1242. https://doi.org/10.3390/nu11061242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Molina-Tizo N, Victoria MT, Soriano-García M. Isolation, biochemical characterization, oxido-reductive and proteolytic activities of globulin protein isolates from seeds of chia. J Anal Pharm Res. 2017;5(1):00132. https://doi.org/10.15406/japlr.2017.05.00132.

    Article  Google Scholar 

  18. Sandoval-Oliveros MR, Paredes-López O. Isolation and characterization of proteins from chia seeds (Salvia hispanica L.). J Agric Food Chem. 2012;61(1):193–201. https://doi.org/10.1021/jf3034978.

    Article  PubMed  CAS  Google Scholar 

  19. Valdivia-López M, ÁngelesTecante A. Chia (Salvia hispanica): a review of native Mexican seed and its nutritional and functional properties. Adv Food Nutr Res. 2015;75:53–75. https://doi.org/10.1016/bs.afnr.2015.06.002.

    Article  PubMed  CAS  Google Scholar 

  20. Marcinek K, Krejpcio Z. Chia seeds (Salvia hispanica): health promoting properties and therapeutic applications-a review. RocznikiPaństwowegoZakładuHigieny. 2017;68(2) https://doi.org/10.3390/nu11061242.

  21. Ramírez-Jaramillo G, Lozano-Contreras MG. Potential for growing Salvia hispanica L., areas under rainfed conditions in Mexico. Agric Sci. 2015;6(09):1048. https://doi.org/10.4236/as.2015.69100.

    Article  Google Scholar 

  22. Reyes-Caudillo E, Tecante A, Valdivia-López MA. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008;107(2):656–63. https://doi.org/10.1016/j.foodchem.2007.08.062.

    Article  CAS  Google Scholar 

  23. Ciftci ON, Przybylski R, Rudzińska M. Lipid components of flax, perilla, and chia seeds. Eur J Lipid Sci Technol. 2012;114(7):794–800. https://doi.org/10.1002/ejlt.201100207.

    Article  CAS  Google Scholar 

  24. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128. https://doi.org/10.3390/nu8030128.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Coelho VR, Vieira CG, de Souza LP, Moysés F, Basso C, Papke DK, Pires TR, Siqueira IR, Picada JN, Pereira P. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sci. 2015;122:65–71. https://doi.org/10.1016/j.lfs.2014.11.009.

    Article  PubMed  CAS  Google Scholar 

  26. Capitani MI, Spotorno V, Nolasco SM, Tomás MC. Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT- Food Sci Technol. 2012;45(1):94–102. https://doi.org/10.1016/j.lwt.2011.07.012.

    Article  CAS  Google Scholar 

  27. Biswas S, Islam F, Imran A, Zahoor T, Noreen R, Fatima M, Zahra SM, Asif Shah M. Phytochemical profile, nutritional composition, and therapeutic potentials of chia seeds: A concise review. Cogent Food & Agriculture. 2023;9(1):2220516. https://doi.org/10.1080/23311932.2023.2220516.

    Article  CAS  Google Scholar 

  28. Mariana Grancieri HerciaStampini Duarte Martino Elvira Gonzalez de Mejia. Chia seed (Salvia hispanica L) as a source of proteins and bioactive peptides with health benefits: a review 2019.;18, (2), 480-499. https://doi.org/10.1111/1541-4337.12423

  29. Porras-Loaiza P, Jiménez-Munguía MT, Sosa-Morales ME, Palou E, López-Malo A. Physical properties, chemical characterization and fatty acid composition of Mexican chia (S alvia hispanica L.) seeds. Int J Food Sci Technol. 2014;49(2):571–7. https://doi.org/10.1111/ijfs.12339.

    Article  CAS  Google Scholar 

  30. Poudyal H, Panchal SK, Waanders J, Ward L, Brown L. Lipid redistribution by α-linolenic acid-rich chia seed inhibits stearoyl-CoA desaturase-1 and induces cardiac and hepatic protection in diet-induced obese rats. J Nutr Biochem. 2012;23(2):153–62. https://doi.org/10.1016/j.jnutbio.2010.11.011.

    Article  PubMed  CAS  Google Scholar 

  31. da Silva MR, Lenquiste SA, Moraes EA, Maróstica MR Jr. Antioxidant potential of dietary chia seed and oil (Salvia hispanica L.) in diet-induced obese rats. Food Res Int. 2015;76:666–74. https://doi.org/10.1016/j.foodres.2015.07.039.

    Article  CAS  Google Scholar 

  32. Tasioula-Margari M, Tsabolatidou E. Extraction, separation, and identification of phenolic compounds in virgin olive oil by HPLC-DAD and HPLC-MS. Antioxidants. 2015;4(3):548–62. https://doi.org/10.3390/antiox4030548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan C. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J Agric Food Chem. 2010;58(19):10576–81. https://doi.org/10.1021/jf102042g.

    Article  PubMed  CAS  Google Scholar 

  34. Cvetkovikj I, Stefkov G, Acevska J, Stanoeva JP, Karapandzova M, Stefova M, Dimitrovska A, Kulevanova S. Polyphenolic characterization and chromatographic methods for fast assessment of culinary Salvia species from South East Europe. J Chromatogr A. 2013;1282:38–45. https://doi.org/10.1016/j.chroma.2012.12.068.

    Article  PubMed  CAS  Google Scholar 

  35. Rubió L, Motilva MJ, Macià A, Ramo T, Romero MP. Development of a phenol-enriched olive oil with both its own phenolic compounds and complementary phenols from thyme. J Agric Food Chem. 2012;60(12):3105–12. https://doi.org/10.1021/jf204902w.

    Article  PubMed  CAS  Google Scholar 

  36. Guan Z, Li S, Lin Z, Yang R, Zhao Y, Liu J, Yang S, Chen A. Identification and quantitation of phenolic compounds from the seed and pomace of Perilla frutescens Using HPLC/PDA and HPLC-ESI/QTOF/MS/MS. Phytochem Anal. 2014;25(6):508–13. https://doi.org/10.1002/pca.2521.

    Article  PubMed  CAS  Google Scholar 

  37. Garrido-Galand S, Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: a review. Food Res Int. 2021;145:110398. https://doi.org/10.1016/j.foodres.2021.110398.

    Article  PubMed  CAS  Google Scholar 

  38. Jayanthy G, Subramanian S. Rosmarinic acid, a polyphenol, ameliorates hyperglycemia by regulating the key enzymes of carbohydrate metabolism in high fat diet-STZ induced experimental diabetes mellitus. Biomed Prev Nutr. 2014;4(3):431–7. https://doi.org/10.1016/j.bionut.2014.03.006.

    Article  Google Scholar 

  39. Mazola YT, Fernandes EADN, Sarriés GA, Bacchi MA, Gonzaga CL. Authentication of beef cuts by multielement and machine learning approaches. J Trace Elem Med Biol. 2023;78:127164. https://doi.org/10.1016/j.jtemb.2023.127164.

    Article  PubMed  CAS  Google Scholar 

  40. Rodrigues, C.F., Salgueiro, W., Bianchini, M. et al. Salvia hispanica L. (chia) seeds oil extracts reduce lipid accumulation and produce stress resistance in Caenorhabditis elegans. NutrMetab 2018.15, 83. https://doi.org/10.1186/s12986-018-0317-4

  41. Ha NM, Tran SH, Shim YH, Kang K. Caenorhabditis elegans as a powerful tool in natural product bioactivity research. Appl Biol Chem. 2022;65(1):1–18. https://doi.org/10.1186/s13765-022-00685-y.

    Article  Google Scholar 

  42. Vuksan V, Whitham D, Sievenpiper JL, Jenkins AL, Rogovik AL, Bazinet RP, Vidgen E, Hanna A. Supplementation of conventional therapy with the novel grain Salba (Salvia hispanica L.) improves major and emerging cardiovascular risk factors in type 2 diabetes: results of a randomized controlled trial. Diabetes Care. 2007;30(11):2804–10. https://doi.org/10.2337/dc07-1144.

    Article  PubMed  CAS  Google Scholar 

  43. Vuksan V, Jenkins AL, Dias AG, Lee AS, Jovanovski E, Rogovik AL, Hanna A. Reduction in postprandial glucose excursion and prolongation of satiety: possible explanation of the long-term effects of whole grain Salba (Salvia Hispanica L.). Eur J Clin Nutr. 2010;64(4):436. https://doi.org/10.1038/ejcn.2009.159.

    Article  PubMed  CAS  Google Scholar 

  44. Vuksan V, Jenkins AL, Brissette C, Choleva L, Jovanovski E, Gibbs AL, Bazinet RP, Au-Yeung F, Zurbau A, Ho HVT, Duvnjak L, Sievenpiper JL, Josse RG, Hanna A. Salba-chia (Salvia hispanica L.) in the treatment of overweight and obese patients with type 2 diabetes: a double-blind randomized controlled trial. NutrMetab. Cardiovasc Dis. 2017;27:138–46. https://doi.org/10.1016/j.numecd.2016.11.124.

    Article  CAS  Google Scholar 

  45. Spahr A, Divnic-Resnik T. Impact of health and lifestyle food supplements on periodontal tissues and health. Periodontol 2000. 2022;90(1):146–75. https://doi.org/10.1111/prd.12455.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhang B, Deng Z, Ramdath DD, Tang Y, Chen PX, Liu R, et al. Phenolic profiles of 20 Canadian lentil cultivars and their contribution to antioxidant activity and inhibitory effects on α-glucosidase and pancreatic lipase. Food Chem. 2015;172:862–72. https://doi.org/10.1016/j.foodchem.2014.09.144.

    Article  PubMed  CAS  Google Scholar 

  47. Rahman MJ, de Camargo AC, Shahidi F. Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. J Funct Foods. 2017;35:622–34. https://doi.org/10.1016/j.jff.2017.06.044.

    Article  CAS  Google Scholar 

  48. Fernández-López J, Lucas-González R, Viuda-Martos M, Sayas-Barberá E, Pérez-Alvarez JA. Chia oil extraction coproduct as a potential new ingredient for the food industry: chemical, physicochemical, techno-functional and antioxidant properties. Plant Foods Human Nutr. 2018;73(2):130–6. https://doi.org/10.1007/s11130-018-0670-5.

    Article  Google Scholar 

  49. Farinon B, Molinari R, Costantini L, Merendino N. The seed of industrial hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients. 2020;12(7):1935. https://doi.org/10.3390/nu12071935.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Sargi SC, Silva BC, Santos HM, Montanher PF, Boeing JS, Júnior S, Oliveira O, Souza NE, Visentainer JV. Antioxidant capacity and chemical composition in seeds rich in omega-3: chia, flax, and perilla. Food Sci Technol. 2013;33(3):541–8. https://doi.org/10.1590/S0101-20612013005000057.

    Article  Google Scholar 

  51. Orona-Tamayo D, Valverde ME, Nieto-Rendon B, Paredes-Lopez O. Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. Food. Sci Technol. 2015;64:236–42. https://doi.org/10.1016/j.lwt.2015.05.033.

    Article  CAS  Google Scholar 

  52. Ayerza R, Coates W, Lauria M. Chia seed (Salvia hispanica L.) as an omega-3 fatty acid source for broilers: influence on fatty acid composition, cholesterol and fat content of white and dark meats, growth performance, and sensory characteristics. Poult Sci. 2002;81(6):826–37. https://doi.org/10.1093/ps/81.6.826.

    Article  PubMed  CAS  Google Scholar 

  53. Ayerza R Jr, Coates W. Effect of dietary α-linolenic fatty acid derived from chia when fed as ground seed, whole seed and oil on lipid content and fatty acid composition of rat plasma. Ann Nutr Metab. 2007;51(1):27–34. https://doi.org/10.1159/000100818.

    Article  PubMed  CAS  Google Scholar 

  54. Fernandez I, Vidueiros SM, Ayerza R, Coates W, Pallaro A. Impact of chia (Salvia hispanica L. on the immune system: preliminary study). Proc Nutr Soc. 2008;67 https://doi.org/10.1017/S0029665108006216.

  55. Diwakar G, Rana J, Saito L, Vredeveld D, Zemaitis D, Scholten J. Inhibitory effect of a novel combination of Salvia hispanica (chia) seed and Punicagranatum (pomegranate) fruit extracts on melanin production. Fitoterapia. 2014;97:164–71. https://doi.org/10.1016/j.fitote.2014.05.021.

    Article  PubMed  CAS  Google Scholar 

  56. Park BD, Jung SG, Park HJ. Skin external composition containing chia seed oil. Korea Patent 2010005799, 2010

  57. Nieman DC, Gillitt ND, Meaney MP, Dew DA. No positive influence of ingesting chia seed oil on human running performance. Nutrients. 2015;7:3666–76. https://doi.org/10.3390/nu7053666.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Illian TG, Casey JC, Bishop PA. Omega 3 chia seed loading as a means of carbohydrate loading. J Strength Cond Res. 2011;25:61–5. https://doi.org/10.1519/JSC.0b013e3181fef85c.

    Article  PubMed  Google Scholar 

  59. Aguilar-Toalá JE, Hall FG, Urbizo-Reyes U, Liceaga AM. Sustainable, alternative sources of bioactive peptides. In: Biologically Active Peptides. Academic Press; 2021. pp 427–53. https://doi.org/10.1016/B978-0-12-821389-6.00004-2.

  60. Sánchez-Velázquez, O. A., Mondor, M., Segura-Campos, M. R., del Carmen Quintal-Bojórquez, N., & Hernández-Álvarez, A. J. (2022). Bioactive phytochemicals from chia seed (Salvia hispanica) oil processing by-products. In Bioactive phytochemicals from vegetable oil and oilseed processing by-products (pp. 1-25). https://doi.org/10.1007/978-3-030-63961-7_30-1

  61. de Falco B, Amato M, Lanzotti V. Chia seeds products: an overview. Phytochem Rev. 2017;16(4):745–60. https://doi.org/10.1007/s11101-017-9511-7.

    Article  CAS  Google Scholar 

  62. Bilal T, Pirzadah BM. Pseudocereals as super foods of 21st century. Recent technological interventions. J Agric Food Res. 2020; https://doi.org/10.1016/j.jafr.2020.100052.

  63. Enes BN, Moreira LPD, Silva BP, Grancieri M, Lúcio HG, Venâncio VP, Mertens-Talcott SU, Rosa COB, Martino HSD. Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced dietexperimental studies: a systematic review. J Food Sci. 2020:226–39. https://doi.org/10.1111/1750-3841.15003.

  64. Prathyusha P, Kumari BA, Suneetha WJ, Srujana MNS. Chia seeds for nutritional security. J Pharmacogn Phytother. 2019;8(3):2702–7.

    CAS  Google Scholar 

  65. ** F, Nieman DC, Sha W, **e G, Qiu Y, Jia W. Supplementation of milled chia seeds increases plasma ALA and EPA in postmenopausal women. Plant Foods Hum Nutr. 2012;67(2):105–10. https://doi.org/10.1007/s11130-012-0286-0.

    Article  PubMed  CAS  Google Scholar 

  66. Nieman DC, Cayea EJ, Austin MD, Henson DA, McAnulty SR, ** F. Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr Res. 2009;29(6):414–8. https://doi.org/10.1016/j.nutres.2009.05.011.

    Article  PubMed  CAS  Google Scholar 

  67. Dinu M, Pagliai G, Sofi F. A heart-healthy diet: recent insights and practical recommendations. Curr Cardiol Rep. 2017;19(10):95. https://doi.org/10.1007/s11886-017-0908-0.

    Article  PubMed  Google Scholar 

  68. Calder PC. n− 3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr. 2006;83(6):1505S–19S. https://doi.org/10.1093/ajcn/83.6.1505S.

    Article  PubMed  CAS  Google Scholar 

  69. Coorey R, Tjoe A, Jayasena V. Gelling properties of chia seed and flour. J Food Sci. 2014;79(5):E859–66. https://doi.org/10.1111/1750-3841.12444.

    Article  PubMed  CAS  Google Scholar 

  70. WHO. Fact sheet: cardiovascular diseases (CVDs). WHO; 2017.

    Google Scholar 

  71. World Heart Federation. 2017. "Risk factors - World Heart Federation - World Heart Federation" 30/5/17.

  72. Ding Y, Lin HW, Lin YL, Yang DJ, Yu YS, Chen JW, Wang SY, Chen YC. Nutritional composition in the chia seed and its processing properties on restructured ham-like products. J Food Drug Anal. 2018;26(1):124–34. https://doi.org/10.1016/j.jfda.2016.12.012.

    Article  PubMed  CAS  Google Scholar 

  73. Cassiday L. Chia: superfood or superfad? Int News Fats Oils Relat Mater. 2017; https://doi.org/10.21748/inform.01.2017.06.

  74. Pawlosky RJ, Hibbeln JR, Lin Y, Goodson S, Riggs P, Sebring N, et al. Effects of beef-and fish-based diets on the kinetics of n− 3 fatty acid metabolism in human subjects. Am J Clin Nutr. 2003;77(3):565–72. https://doi.org/10.1093/ajcn/77.3.565.

    Article  PubMed  CAS  Google Scholar 

  75. Brouwer IA, Katan MB, Zock PL. Dietary α-linolenic acid is associated with reduced risk of fatal coronary heart disease, but increased prostate cancer risk: a meta-analysis. J Nutr. 2004;134(4):919–22. https://doi.org/10.1093/jn/134.4.919.

    Article  PubMed  CAS  Google Scholar 

  76. Rabail R, Khan MR, Mehwish HM, Rajoka MSR, Lorenzo JM, Kieliszek M, et al. An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceutical food. Front Biosc-Landmark. 2021;26(9):643–54. https://doi.org/10.52586/4973.

    Article  CAS  Google Scholar 

  77. Pizzini A, Lunger L, Demetz E, Hilbe R, Weiss G, Ebenbichler C, Tancevski I. The role of omega-3 fatty acids in reverse cholesterol transport: a review. Nutrients. 2017;9(10):1099. https://doi.org/10.3390/nu9101099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Segura-Campos MR, Salazar-Vega IM, Chel-Guerrero LA, Betancur-Ancona DA. Biological potential of chia (Salvia hispanica L.) protein hydrolysates and their incorporation into functional foods. LWT-Food Sci Technol. 2013;50(2):723–31. https://doi.org/10.1016/j.lwt.2012.07.017.

    Article  CAS  Google Scholar 

  79. de Souza Ferreira C, de Sousa Fomes LDF, Santo da Silva GE, Rosa G. Effect of chia seed (Salvia Hispanica L.) consumption on cardiovascular risk factors in humans: a systematic review. Nutr Hosp. 2015;32(5):1909–18. https://doi.org/10.3305/nh.2015.32.5.9394.

    Article  PubMed  Google Scholar 

  80. Imran M, Salehi B, Sharifi-Rad J, et al. Kaempferol: a key emphasis to its anticancer potential. Molecules. 2019;24(12):2277. https://doi.org/10.3390/molecules24122277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Lee AS, Jovanovski E, Jenkins AL, Desouza R, Vuksan V. Effect of whole and ground Salba seeds (Salvia hispanica L.) on postprandial glycemia in healthy volunteers: a randomized controlled, dose-response trial [Thesis]. Toronto, Canada: University of Toronto; 2009.

    Google Scholar 

  82. Vuksan V, Choleva L, Jovanovski E, Jenkins AL, Au-Yeung F, Dias AG, Ho HVT, Zurbau A, Duvnjak L. Comparison of flax (Linumusitatissimum) and Salba-chia (Salvia hispanica L.) seeds on postprandial glycemia and satiety in healthy individuals: a randomized, controlled, crossover study. Eur J Clin Nutr. 2017;71:234–8. https://doi.org/10.1038/ejcn.2016.148.

    Article  PubMed  CAS  Google Scholar 

  83. Guevara-Cruz M, Tovar AR, Aguilar-Salinas CA, Medina-Vera I, Gil-Zenteno L, Hernandez-Viveros I, Lopez-Romero P, Ordaz-Nava G, Canizales-Quinteros S, Pineda LEG, Torres N. A dietary pattern including nopal, chia seed, soy protein, and oat reduces serum triglycerides and glucose intolerance in patients with metabolic syndrome. J Nutr. 2012;142:64–9. https://doi.org/10.3945/jn.111.147447.

    Article  PubMed  CAS  Google Scholar 

  84. Nieman DC, Cayea EJ, Austin MD, Henson DA, McAnulty SR, ** F. Chia seed does not promote weight loss or alter disease risk factors in overweight adults. Nutr Res. 2009;26:411–4. https://doi.org/10.1016/j.nutres.2009.05.011.

    Article  CAS  Google Scholar 

  85. Valenzuela R, Buscanan KA, Chamorro R, Barrera C, Sandoval J, Puigrredon C, Parraguez G, Orellana P, Gonzalez V, Valenzuela A. Modification of docosahexaenoic acid composition of milk from nursing women who received alpha linolenic acid from chia oil during gestation and nursing. Nutrients. 2015;7:6405–24. https://doi.org/10.3390/nu7085289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Awuchi CG, Okpala COR. Natural nutraceuticals, especially functional foods, their ma-jor bioactive components, formulation, and health benefits for disease prevention-an overview. J Food Bioactives. 2022;19 https://doi.org/10.31665/JFB.2022.18317.

  87. Ngoc LTN, Moon JY, Lee YC. Antioxidants for improved skin appearance: intracellular mechanism, challenges and future strategies. Int J Cosmet Sci. 2023; https://doi.org/10.1111/ics.12848.

  88. Jeong SK, Park HJ, Park BD, Kim IH. Effectiveness of topical chia seed oil on pruritus of end-stage renal disease (ESRD) patients and healthy volunteers. Ann Dermatol. 2010;22:143–8. https://doi.org/10.5021/ad.2010.22.2.143.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Emmons KM, Colditz GA. Realizing the potential of cancer prevention — the role of implementation science. N Engl J Med. 2017;376(10):986–90. https://doi.org/10.1056/NEJMsb1609101.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Rahman MM, Dhar PS, Anika F, Ahmed L, Islam MR, Sultana NA, Cavalu S, Pop O, Rauf A. Exploring the plant-derived bioactive substances as antidiabetic agent: an extensive review. Biomed Pharmacother. 2022;152:113217. https://doi.org/10.1016/j.biopha.2022.113217.

    Article  PubMed  CAS  Google Scholar 

  91. Serini S, Calviello G. Modulation of Ras/ERK and phosphoinositide signaling by long-chain n-3 PUFA in breast cancer and their potential complementary role in combination with targeted drugs. Nutrients. 2017;9(3):185. https://doi.org/10.3390/nu9030185.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Roleira FMF, Tavares-da-Silva EJ, Varela CL, Costa SC, Silva T, Garrido J, Borges F. Plant derived and dietary phenolic antioxidants: anticancer properties. Food Chem. 2015:235–58. https://doi.org/10.1016/j.foodchem.2015.03.039.

  93. Gazem RAA, Puneeth HR, Shivmadhu C, Madhu ACS. In vitro anticancer and anti-lipoxygenase activities of chia seed oil and its blends with selected vegetable oils. In Vitro. 2017;10(10) https://doi.org/10.22159/ajpcr.2017.v10i10.19450.

  94. Espada CE, Berra MA, Martinez MJ, Eynard AR, Pasqualini ME. Effect of chia oil (Salvia hispanica) rich in ω-3 fatty acids on the eicosanoid release, apoptosis and T-lymphocyte tumor infiltration in a murine mammary gland adenocarcinoma. Prostaglandins Leukot Essent Fatty Acids. 2007;77:21–8. https://doi.org/10.1016/j.plefa.2007.05.005.

    Article  PubMed  CAS  Google Scholar 

  95. Rosas-Ramirez DG, Fragoso-Serrano M, Escandon-Rivera S, Vargas-Ramirez AL, Reyes-Grajeda JP, Soriano-Garcia M. Resistance-modifying activity in vinblastine-resistant human breast cancer cells by oligosaccharides obtained from mucilage of chia seeds. Phytother Res. 2017;31:906–14. https://doi.org/10.1002/ptr.5815.

    Article  PubMed  CAS  Google Scholar 

  96. Muñoz LA, Aguilera JM, Rodriguez-Turienzo L, Cobos A, Diaz O. Characterization and microstructure of films made from mucilage of Salvia hispanica and whey protein concentrate. J Food Eng. 2012;111(3):511–8. https://doi.org/10.1016/j.jfoodeng.2012.02.031.

    Article  CAS  Google Scholar 

  97. Knez Hrnčič M, Ivanovski M, Cör D, Knez Ž. Chia seeds (Salvia hispanica L.): an overview—phytochemical profile, isolation methods, and application. Molecules. 2020;25(1):11. https://doi.org/10.3390/molecules25010011.

    Article  CAS  Google Scholar 

  98. Pignia NB, Aranibara C, Masa AL, Aguirrea A, Borneoa R, Daniel Wunderlina M, Baroni V. Chemical profile and bioaccessibility of polyphenols from wheat pasta supplemented with partially-deoiled chia flour. LWT-Food Sci Technol. 2020;124:109134. https://doi.org/10.1016/j.lwt.2020.109134.

    Article  CAS  Google Scholar 

  99. Hernández LM. Mucílago de chía (Salvia hispanica): microestructura, caracterización físico-química y aplicaciones en la industria alimentaria. Doctoral dissertation, Universidade de Santiago de Compostela; 2012.

    Google Scholar 

  100. Inglett GE, Chen D, Liu SX, Lee S. Pasting and rheological properties of oat products dry-blended with ground chia seeds. LWT-Food Sci Technol. 2014;55(1):148–56. https://doi.org/10.1016/j.lwt.2013.07.011.

    Article  CAS  Google Scholar 

  101. Azeem W, Nadeem M, Ahmad S. Stabilization of winterized cottonseed oil with chia (Salvia hispanica l.) seed extract at ambient temperature. J Food Sci Technol. 2015;52(11):7191–9. https://doi.org/10.1007/s13197-015-1823-2.

    Article  CAS  Google Scholar 

  102. Aziz T, Ihsan F, Khan AA, ur Rahman S, Zamani GY, Alharbi M, et al. Assessing the pharmacological and biochemical effects of Salvia hispanica (chia seed) against oxidized Helianthus annuus (sunflower) oil in selected animals. Acta Biochim Pol. 2023;70(1):211–8. https://doi.org/10.18388/abp.2020_6621.

    Article  PubMed  CAS  Google Scholar 

  103. Dick M, Costa TM, Gomaa A, Subirade M, de Oliveira RA, Flôres SH. Edible film production from chia seed mucilage: effect of glycerol concentration on its physicochemical and mechanical properties. Carbohydr Polym. 2015;130:198–205. https://doi.org/10.1016/j.carbpol.2015.05.040.

    Article  PubMed  CAS  Google Scholar 

  104. Ahmed M, Hamed R, Ali M, Hassan A, Babiker E. Proximate composition, antinutritional factors and protein fractions of guar gum seeds as influenced by processing treatments. Pak J Nutr. 2006;5(5):340–5. https://doi.org/10.3923/pjn.2006.481.484.

    Article  Google Scholar 

  105. Alonso-Calderon A, Chávez-Bravo E, Rivera A, Montalvo-Paquini C, Arroyo-Tapia L. Characterization of black chia seed (Salvia hispanica L.) and oil and quantification of β-sitosterol. Int Res J Biol Sci. 2013:70–2.

  106. Parker J, Schellenberger AN, Roe AL, Oketch-Rabah H, Calderón AI. Therapeutic perspectives on chia seed and its oil: a review. Planta Med. 2018;84(09/10):606–12. https://doi.org/10.1055/a-0586-4711.

    Article  PubMed  CAS  Google Scholar 

  107. Alam MA, Subhan N, Hossain H, Hossain M, Reza HM, Rahman MM, Ullah MO. Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. Nutr Metab. 2016;13:27. https://doi.org/10.1186/s12986-016-0080-3.

    Article  CAS  Google Scholar 

  108. Andueza S, Manzocco L, De Pena MP, Cid C, Nicoli C. Caffeic acid decomposition products: antioxidants or pro-oxidants? Food Res Int. 2009;42(1):51–5. https://doi.org/10.1016/j.foodres.2008.08.006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere gratitude to all those who contributed to the successful completion and publication of this review paper. We also extend our thanks to all the authors whose works have been cited in this paper, without whom this paper would not have been possible. Their valuable research has laid the foundation for our work, and we are indebted to them for their contributions to the field.

Author information

Authors and Affiliations

Authors

Contributions

• Peerzada Gh Jeelani: conception and design of the study, data collection, analysis, interpretation, and drafting and critical revision of the manuscript (major contribution)

• Gopi Krishna Perinbarajan: conception and design of the study, data analysis and interpretation, and writing and revision of the manuscript (major contribution)

• Bruce Joshua Sinclair: conception and design of the study, data analysis and interpretation, and significant input in drafting and revising the manuscript (major contribution)

• Harish Ganesan: design of the study, data collection, analysis, interpretation, and writing and revision of the manuscript (major contribution)

• Nupur Ojha and C Ramalingam: conception and design of the study, data collection, analysis, interpretation, and writing and revision of the manuscript (major contribution)

• Pandiyan Muthuramalingam and Abdel-TawabMossa: Minor contributions in data collection, analysis, and manuscript review

Corresponding author

Correspondence to Peerzada Gh Jeelani.

Ethics declarations

Ethical approval

None.

Conflict of interest

The authors declare no competing interests.

Additional information

Highlights

• People seek out functional foods like chia seeds since poor lifestyle decisions result in health issues.

• Antioxidants and healthy acids are present in chia seeds, which may have therapeutic effects.

• They provide a healthy lipid balance thanks to phenolic acid and omega-3 fatty acids.

• Traditional medications for conditions like diabetes and cardiovascular problems may not be as effective as chia seeds.

• The pharmaceutical design of chia seeds for therapeutic use is examined in this review paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeelani, P.G., Sinclair, B.J., Perinbarajan, G.K. et al. The therapeutic potential of chia seeds as medicinal food: a review. Nutrire 48, 39 (2023). https://doi.org/10.1186/s41110-023-00224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-023-00224-9

Keywords

Navigation